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. Objective: The goal of this research is to develop new and better digital communi-
cation systems using wavelets and multirate filterbanks, which include new source and

channel codings for antijamming applications.

. Main Research Accomplishments: We have made several research accomplish-

ments as follows.

(i). Malvar Wavelets on Arbitrary Shapes. We systematically constructed two dimen-
sional Malvar wavelets defined on L-shaped regions, which can be used to construct
two dimensional Malvar wavelets on arbitrary shapes. The application of such wavelets
include the discrete cosine transform (DCT) image coding for arbitrary shaped objects
such as the emerged video coding standard MPEG4. The two dimensional Malvar
wavelets may be used the eliminate the block effects produced by the DCT compres-

sion at high compression ratios.

(ii). Ambiguity Resistant Precoders for ISI Mitigation Without Channel Information.
We developed new precoding schemes using multirate filterbanks, which are called
ambiguity resistant precoders (ARP). With ARP, the ISI channel information is not
necessary for the transmitter or the receiver to recover the information. We character-
ized all ARP, which are some special families of matrix polynomials. Any ARP can be
used to resist ISI, to also resist additive random errors optimal ARP were studied and
characterized.

(iii). A New System Identification Method. New channel identification using chirp

signals and joint time-frequency analysis and synthesis was proposed, where the per-

formance is superior to the conventional method at low SNR.

(iv). Multiwavelet Transforms. A new prefiltering for discrete multiwavelet transforms,

which has better energy compaction than other prefiltering, was obtained.

(v). A family of new pulse shaping filters that are ISI free with the matched filtering
and also ISI free wothout the matched filtering, was obtained, which has been recently
extended by numerous researchers.

(vi). A quantatitive SNR analysis for joint time-frequency analysis by introducing
3dB SNR definition in the joint time-frequency plane was obtained.

(vii). A frequency estimation method from the undersampled data with multiple

frequencies was proposed.

(viii). An optimal multiple pulse repetition frequency (PRF) design method was
proposed.



(ix). A new wavelet based watermarking was proposed.

. Significance: The results obtained through this project have advanced digital signal
processing and its applications, in particular wavelets and filterbanks, in telecommu-
nications, multimedia systems, and radar applications with some jamming resistance

properties.
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Muttiple frequency detection in
undersampled complex-valued waveforms
with close multiple frequencies

Guangcai Zhou and Xiang-Gen Xia

Indexing terms: Signal processing. Frequency measurement

The determination of multiple frequencies in undersampled
waveforms is studied. where the multiple frequencies are close to
each other. Given multiple undersampling rates. the maximal
range of the detectable multiple frequencies is the least common
multiple of these multiple rates under the assumption that these
rates are larger than twice the maximal distance between the
multiple frequencies. .

Introduction: A traditional method to detect the frequencies of a
multiple frequency waveform x(f) is to sample x(#) at the Nyquist
sampling rate and then to implement the discrete Fourier trans-
form (DFT). The peaks in the DFT domain provide the frequen-
cies of this waveform. However, when the maximal frequency in
the waveform is very large. the sampling rate also needs to be very
large. Recently. methods to detect a single frequency in an under-
sampled real-valued waveform have appeared {1 - 4]. A single fre-
quency in a real-valued waveform actually corresponds to two
symmetric frequencies in a complex-valued waveform, where their
coefficients are complex conjugates of each other. Most recently.
general multiple frequency detection in undersampled complex-
valued waveforms is studied in [S]. Given L undersampling rates
of a complex-valued waveform with K multiple frequencies with L
> nK. a range for the detectable frequencies is given in [5]. which
is the minimum of the least common multiples of all possible n
different rates in the L undersampling rates. As mentioned in 5],
this range may not be optimal, in particular when some prior
information on the muluple frequencies is known. It should be
noted that, the larger the range of the detectable multiple frequen-
cies. the better the sampling efficiency, when the multiple sampling
rates are given. The main idea in the above method is the imple-
mentation of multiple DFTs of the undersampled waveforms and
each DFT gives a set of residues of the multiple frequencies mod-
ulo the sampling rates. Then. the (generalised) Chinese remainder
theorem (CRT) is used in the determination of these multiple fre-
quencies.

In this Letter. we study the case when the multiple frequencies
in a complex-valued waveform are assumed in a priori to be close
to each other within a distance W. Given L undersampling rates,
each of which is > 2W, we prove that the maximal range for the
detectable multiple frequencies is the least common multiple (lcm)
of these sampling rates.

Uniqueness of multiple frequency determination: Without loss of
generality, the multiple frequencies in a waveform x(s) are
assumed f,. fu, ... fx With f; < fi < ... < fr. The complex-valued
waveform x(7) is represented by

K
I(t) =Y Ae? N
k=1

where A4,. k = 1, ..., K. are nonzero coefTicients. Let m, be one

anm It atahaalal NiTalall l ul an o a Y ol

K

=)= 223fanimy
I, [n) r(ml) g.hr neZ (1)

We first consider the single frequency casc. In this case (1) =
At and x, [n) = A&t Let f, = nmy 4+ 0<rsm - 1.
ie. r, = f, (modm,). then the m, point DFT of x, [n). 0 <n<m, -
I.1s ,

DFT,, (rm. ) = 4180k = ry) 0<k<m -1 (2)

This means that the residue r, = f, mod m, can be detected from
the m, point DFT of x,, [n]. Now. let .. .... m, be other under-
sampled rates and km:!m,. m,. .... m, } be the lcm of the integers in

the set {m., .... m,}. By the CRT we have

Lemma 1: If f, < kemim,. m.. ... m,}. then f, can be uniquely
determined from the residues r, = f, (mod m,) using the above
undersampled DFTs.

We now consider the multiple frequency case. Let r,, = f; mod
m,. Then, the m, point DFT of x,,[n). 0 Sn<m, -1 is

K
DFTm,(zm[n]) = Y Aeli—ru) 0<i<m—1
k=1
1<I<L  (3)

From this representation. we see that. without the knowledge of
amplitudes (it is usually impossible. for example, if all of the
nonzero amplitudes are equal), generally we cannot match the
peaks and the residues precisely (see example in Section 3). How-
ever, if we know that r,, is the residue of f; modulo m, for / = 1, 2,
v L, ie. ry = f; mod m, and f; is upper bounded by lem{m;, ...,
mL}, then. by Lemma 1, we can determine the frequencies f, ..., fx
uniquely. In conclusion, we have the following lemma.

Lemma 2: If max{f;, ..., fx} < lem{m,. ... m;} and we know the
residue r,, of f, modulo m, precisely for 1 /< Land 1 <k < K|
then we can determine f; ..., fx uniquely.

If we only know that the set {r,, k = 1. ..K}, is the set of all
residues of f;, 1 < k < K, modulo m, for / =1, 2, .... L, in general it
is impossible to determine which one in the set is the residue of f,
and therefore in general it is impossible to determine the multiple
frequencies f;. It is possible, however. if some prior information
about the multiple frequencies f; is known, which is the goal of the
rest of this Letter.

Without loss of generality. we may assume that f; < f, < ... < f.
Let W = max, ¢, <« - f} = fx - /1. The undersampling rates are
chosen m,. .... m, such that min{m,. ..., m;} > 2W. Then we have
the following lemma.

Lemma 3: Under the above condition on m, and f,. 1 < /<L, 1<
k < K. the residue r,, of f, modulo m, is uniquely determined by the
set {r,, ...rg}forl</<sLand 1 €k<K

Proof: Since min{m,. .... m;} > 2W, max{}f; - fi} < Wand f,
are all distinct. it is not hard 1o see that the elements in the set {r,,
.... rg} are different from each other. Let {r,, ... 7} = {0, -, O}
with @, < @, < ... < a,. By the following representation

fi=ru+km

fa=ra+kamy

(4)

fr =rri+kxm

and the facts that f; - f; < Wand m, > 2W, we have k, <k, < ...,
<kcandke-k, =0or . If kg =k, thenr,<r,<..<rgandry

-ry< Wik =k=..=k,k.,=..=kg=k +1forsomeie
{1.2, ..., K- 1}, then:

h=ru+kmy .. fiz=rg+kmy (5)
and

finn=rpap ki +)m . fr =K + (ky +1)my (6)

By eqn. 5, we have r,, < ry, < .. <r,and r, - r, < W. By eqn. 6,
we have r,.,,, < 1.y < ... <rgand ry - r,.,, S W. Furthermore r,,
-rg = m - (fx - f}) > W. Hence, we can determine the values of
i ... Ty uniquely according to the following law: if o - @, < W,

then we have r,, = . ... g = 0. If @0, — ;> W, forsome i, I S
i< K-1then ry, = Oy, vy Pyt = Oy Figaens = Oy iy Ty = O
‘Tl r..t.. ann= V71 "N LY 1~



Therelore. 10 all cases we can deternune the Tesidues ulliqucty
Combining the above lemmas. we have obtained the following
main result. -

Theorem 1: Assume complex valued waveform x(7) contains K dif-
ferent frequencies f, for | <k < K. Let m, 1 <1< L be sampling
rates in the undersampled versions x,,{] of x(7) in eqn. 1 with m,
replaced by m. 1 €/ < L. Then the K frequencies f, for 1 Sk < K
can be uniquely determined by using the m, point DFT of x,,fn]

for 1 <1< Lif maxlfi. ... fa} < lemimi. ...y and min'm,. ....
mL;>2max15rs'5AM‘]l]' .
It is clear that the range of f.. lem{m,. ... mj. gIven n,. ... M

is the maximal one. The difference between the above result and
the result in [5] is that the knowledge of min{m,. ... m} > 2max,
., ¢ f - f11s needed in this Letter. while no knowledge is neces-
sary in the result in [5] as mentioned in the introduction.

Multiple frequency determination algorithm: For simplicity. we
assume m,. ... m, are pairwise coprimes. We assume the condi-

tions in theorem 1 hold. Now. we give the concrete determination
algorithm as follows:

Step 1. Sample the waveform x() with the sampling rates m, to
obtain x jnj for 1 1< L. ‘

Step 2. Implement the m, point DFT of x[n.0sn<m~-110
detect the set S, = {@,. .... 0} of K peaks in the DFT domain for
1<i<L .

Step 3. For each peak set {@, ... Qx} = S witha, <o, <. <0y,
if a, - @, € W, then we have r, = @, ... Ty = O fa.-a>W
and o -qa, < W.forsomei, 1 Si<K- 1 then ry; = Q. -s Tkt
= 0. Figns = G oo I = 0. Hence we can determine these resi-
dues r,, of f, uniquely. -

Step 4. By Step 3 we know:

fk =Tk (mod mz) k = 1,....}\’ l = lL (T)
We define:
L M
M= Hm, and M, = — (8)

=1
Since m, and M. are coprime, there are solutions N, of
NM =1 (mod my) 9)
With these A the solution f, is
fe=sraM M+ + rer N ML (mod M) (10)

The above closed formulas for f; are the solutions of f,. For the
CRT involved in step 4. see, for example, [7].

Examples: In this Section, we see a simple example. Consider a
signal with three frequencies, where their differences are at most
10Hz ie. W = 10. We sample this signal with frequencies m, =
27Hz m. = 28Hz. m, = 29Hz. Hence if the largest frequency of
this signal is less than 27 x 28 x 29 = 21924Hz. by theorem 1. we
can uniquely determine these three frequencies. Let f; = 20008 Hz.
f. = 20013Hz and f, = 20017Hz" " * ’

For the sampling rate m, = 27HZ, we obtain the DFT peak val-
ues at {1. 6, 10}. For the sampling rate m, = 28 Hz, we obtain the
DFT peak values at {16, 21, 25} For the sampling rate rm, =
29Hz. we obtain the DFT peak yalues at {3, 7. 27}. Then. from
step 3 we have 3_' :
rm=1 ra=z6 ra ='-‘ 10
r2=16 rp =gl rp= 25
ri3 =27 r3=3 733:= 7
By step 4, the multiple frequencies ¢an be determined.

If we take another sample with rate m, = 31, then the signal
with highest frequency < 679644Hz can be uniquely determined.

Conclusion: In this Letter, we studied the detection of multiple fre-
quencies in undersampled compHx-valued waveforms, where the
multiple frequencies are close to each other. Given the undersam-
pling rates. the maximal range of the detectable multiple frequen-
cies was given, that is the lcm of the undersampling rates, when all
these rates are larger than twice the maximal distance between the
multiple frequencies. The main advantage of undersampling is the

hardware cost reduction [6].
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Performance of adaptive multisensor
decision feedback equaliser for time-varying
frequency selective radio channels

S. Buljore, J.F. Diouris and J. Saillard

Indexing terms: Adaptive equalisers. Radio applications

A multisensor decision feedback equaliser based on the minimum
mean squared error (MMSE) criterion is studied. The superiority
of the performance of the multisensor equaliser is shown by
simulation of a whole communication system in which the
adaptive equaliser is incorporated. The recursive least squares
(RLS) algorithm is used to update the coefficients. From the
results obtained for a time-varying urban terrain channel model.
the extremely interesting tracking capability of the multisensor
equaliser is shown.

Introduction: Frequency selective and time-varying radio chﬁnnels
considerably degrade the performance of OSM-type mobile digital

communication systems [1]. In addition to equalisation. the reduc-

tion in the variation of the signal to noise ratio (SNR) due to time
variation of the radio channels at the receiver using diversity tech-
niques is a desirable asset . This Letter presents a multisensor deci-
sion feedback equaliser (DFE) implemented with the recursive
least squares algorithm for a time-varying typical urban channel.
A Monte Carlo simulation of the digital link incorporating the
multisensor equaliser is carried out. The channel model considered
is given by the GSM recommendations for a typical urban (TU)
environment [2). The superiority of the performance of the multi-
sensor equaliser to combat intersymbol interference (ISI) and fad-
ing is shown. Finally, conclusions on the improved performance
and the very interesting tracking ability of the multisensor DFE
are drawn.

System and channel model: The scheme of the baseband system
simulation is illustrated in Fig. 1. The bit sequences are transmit-
ted using a DQPSK modulation scheme through a square root
raised cosine filter. The channel model used is the typical urban
channel given in Table 1. The receiver consists of another square
root raised cosine filter, an adaptive single/multi-sensor equaliser.
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System Identification Using Chirp Signals and Time-
Variant Filters in the Joint Time-Frequency Domain

Xiang-Gen Xia, Member, IEEE

Abstract—In this paper, we propose a novel method to iden-
tify an unknown linear time invariant (LTI) system in low
signal-to-noise ratio (SNR) environment. The method is based
on transmitting chirp signals for the transmitter and using linear
time-variant filters in the joint time-frequency (TF) domain for
the receiver to reduce noise before identification. Due to the TF
localization property of chirp signals, a large amount of additive
white noise can be reduced, and therefore, SNR before iden-
tification can be significantly increased. This, however, cannot
be achieved in the conventional methods, where psendo-random
signals are used, and therefore, noise reduction techniques do not
apply. Our simulation results indicate that the method proposed
in this paper outperforms the conventional methods significantly
in low SNR environment. This paper provides a good application
of time-frequency analysis and synthesis.

I. INTRODUCTION

HE SYSTEM identification problem is a classical and

important problem in signal processing, which has appli-
cations in many fields including channel estimation in wireless
communications. There have been extensive studies on this
problem; see, for example, 2], [3], [28], [31], and [32]. The
problem can be stated as

y[n] = Z h[n - k]z[k] + v[n] (1.1)
k

where

z[k] transmitted signal;

h[n] impulse response of a linear time invariant (LTI)

system (or channel);

v[n] additive noise;

y[n] received signal.

The problem is to identify the LTI system transfer function
H(w) of h[n] given the input and the output signals z[n] and
yln]-

The conventional method for solving the above problem is
the least-squared solution method that is equal to the cross-
spectral method in stationary cases, i.e., the system transfer
function H(w) can be estimated by

Szy(w)
Srz(w)
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H(w) = (1.2)

where S.,(w) is the cross-spectrum of z[n]| and y[n], and
S.z(w) is the autospectrum of z[n]. When the additive noise
v[n] in (1.1) is a zero-mean Gaussian process and statistically
independent of the input signal z{n], the estimate in (1.2) is
asymptotically unbiased, and its error variance approaches the
Cramer-Rao lower bound that is proportional to the variance
of the additive noise v[n]. Clearly, the performance is limited
by this noise variance, or the signal-to-noise ratio (SNR).
When this SNR is low, the performance of the estimate in
(1.2) is poor. Since the autospectrum of the input signal z[n]
is in the denominator in the estimate (1.2), the input signal
is, in general, chosen as a pseudo-random signal with flat
spectrum [4]. With these kinds of input signals, noise reduction
techniques before system identification do not apply. As a
matter of fact, any traditional noise reduction technique, such
as any Fourier transform technique, does not perform well
for wideband signals. This implies that it is not possible to
increase the SNR or the performance of the estimate (1.2) by
transmitting a pseudo random signal and using the conven-
tional Fourier noise reduction techniques. Several questions
arise here:

i) Can we transmit other wideband signals, such as chirp

signals, instead of pseudo random signals?

ii) If so, can we take the advantage of these wideband

signals and reduce the noise v[n] in (1.1)?
iii) If so, can we improve the performance of the estimate
(1.2) after denoising?

The aim of this paper is to positively answer these questions.
The main idea is the following. Chirp-type signals are trans-
mitted, which have wideband characteristics in the frequency
domain but concentrate in the joint time-frequency domain.
Chirp-type signals are used quite often, such as in radar and
in FM in communications systems. The TF concentration
property usually holds after an LTI system (this will be seen
later). Since a joint TF distribution usually spreads noises and
localizes signals, in particular chirps, the receiver may use a
TF analysis technique (see, for example, [5]-[27]) to map the
received signal y[n] from the time domain into the joint time-
frequency domain. In this way, the SNR can be significantly
increased in the joint TF domain, and the receiver may be
able to see patterns in the joint TF plane and therefore reduce
the noise by filtering in the joint TF domain. This filtering

-is basically a time-variant filtering. We use this name in the

rest of this paper. The model (1.1) after a time-variant filter

1053-587X/97$10.00 © 1997 IEEE
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becomes

g} = 3 hin — Kz[k] + ofn) L 3)
-k

where #[n] is the new noise after the filtering.

The time-variant filter used in this paper is based on the
discrete Gabor transforms, which was studied in [5}-[7]. For
chirp-type signals, about 13 dB SNR is increased consistently
with this filter in [6]. When the original SNR in (1.1) is not
too low, say, for example, above —1 dB, the new SNR in (1.3)
may reach a significant high level so that the estimate of H(w)
from §j[n] and z[n] is accurate enough for many applications.
In this paper, both denoising with several mask design methods
and system identification simulations are performed. These
simulations show that a much better performance over the
conventional method can be achieved.

It should be pointed out that the optimal training signal
design for dynamic system identification has a long history
dating back over 20 years. The design methods are traditionally
based on the minimization of the Cramer-Rao bound for
the system parameter estimation in either the time or the
frequency domain (see, for example, [28]-[32]) but not in
the joint TF domain. The aim of this paper is, however, not
focused on the optimal training signal design, aithough it is
a very interesting topic. Denoising before identification using
nonredundant discrete wavelet transform was studied in [33]
for chemical process control applications.

This paper is organized as follows. In Section II, we briefly
review discrete Gabor transforms and the iterative time-variant
filtering studied in [5]-[7). In Section III, we use the time-

" variant filter studied in Section II to reduce additive white

Gaussian noise for a received signal. The filtering problem in
this paper has its own characteristics due to the fact that the
transmitter and the receiver know the transmitted chirp signal
z[n], and therefore, its TF information is known a priori. This
TF information can be used in designing a mask in the time-
variant filtering. In Section IV, we utilize the conventional
system identification method, i.e., the cross-spectral method
(1.2), after the denoising in Section II. In Section V, we
conclude this paper by addressing some possibilities for further
improven‘xents‘

II. DiSCRETE GABOR TRANSFORM
AND TIME-VARIANT FILTERING

There have been many TF analysis techniques, such as
Wigner-Ville distributions in the Cohen’s class, spectrogram
(short-time Fourier transform or Gabor transform or DFT
filterbanks), and scalogram (wavelets) (see, for example, [5],
[23]-[27]). Some of them, such as bilinear TF distributions,
have high resolution but have crossterms for multicomponent
signals. Some of them, such as linear techniques (for exam-
ple, Gabor transforms and wavelet transforms), do not have
crossterms for multicomponent signals but may not have very
high resolutions. Since, in this paper, we deal with a linear
combination (or a linear system) of various chirp signals, it is
important for a TF analysis technique not to have crossterms
while it should also have a good resolution. This leads us to
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consider Gabor transforms. In this section, we first review the
discrete Gabor transforms (DGT).

Since oversampled DGT is more robust for noise, it is
usually used in noise reduction applications. However, a
disadvantage for oversampled DGT is that it is not an onto
mapping. In other words, not every signal S[k,{] in the DGT
transform domain corresponds to a time domain signal sn]
so that the DGT of s[n] is exactly equal to S[k,I]. This
causes problems in filtering in the DGT transform domain,
which is that the filtered signal in the DGT transform domain °
may not correspond to any time domain signal as shown
in Fig. 1. An intuitive solution for this problem is to take
the least-squared error (LSE) solution in the time domain
(see, for example, [8]-[13]). The LSE, however, usually does
not have a desired TF characteristics in the DGT transform
domain. When a signal is very long, the computational load
for the LSE solution is significantly high because of the
inverse matrix computation. Based on these observations,
an iterative algorithm was proposed in [5]-[7]. Conditions
on the convergence, properties of the limit signals, and the
relationship between the LSE solutions and solutions from
the iterative algorithms were obtained in [6] and [7], where
a significant improvement over the LSE solution was also
shown. The second part of this section is to briefly review
some of these results.

A. Discrete Gabor Transform:

We first review some basics on the DGT, which is necessary
for this paper. For more about the discrete short-time Fourier -
transform, see [14], for more about DFT filterbanks, see [15],
and for more about the DGT, see, for example, [16]-[22]. Let a
signal s[k], a synthesis window function h[n], and an analysis
window function ~y[n] be all periodic with same period L. Then

M~-1N-1
sl = 3 S Connhmnlk] @1
m=0 n=0
L-1
Cmin = ), 8kl nlk] 2.2)
. k=0
hm.n|E] = bk — mAM]WEANE (2.3)
Ymmlk] =k = mAMIW AN (2.4)

and Wy = exp(j2r/L), j = v/—1. The coefficients Cy, , are
called the DGT of the signal s[k], and the representation (2.1)
is called the inverse DGT (IDGT) of the coefficients Cy, n.
One condition on the analysis and synthesis window functions
~[k] and h[k] obtained by Wexler and Raz is the identity'

L-1
> bk +mNJW7 ™My k]
=0

0<m<AN-1, 0<n<AM-1
2.5)

= §[m]é[n],

'If we take the inverse discrete Fourier transform with respect to the
parameter 7 at the both sides, the system (2.5) is the same as the one obtained
in [14] when all convolutions are considered to be cyclic convolutions for
finite length signals in [14]. ’
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Fig. 1. TF transform illustration.

where AM and AN are the time and the frequency sampling
interval lengthes, and M and N are the numbers of sampling
points in the time and the frequency domains, respectively,
M-AM=N-AN =L, MN > L (or AMAN < L). The
critical sampling case is when M - N = AM - AN = L. The
condition (2.5) on window functions k and - can be rewritten
in matrix form as

prL'Y;,x]_ = Hpx1 2.6)

where the subscript m X n means the m by n matrix p =
AM - AN, ypx1 = (7[0),7[1), -+, 7L = 1])T, and ppxy =
(1,0,---,0)T and the element at the (mAM + n)th row and
the kth column in the matrix Hpxy is

hlk + mN)W™ME 0<m<AN-1
0<n<AM-1, 0<k<L-1

In the critical sampling case and when H,y has full rank,
there is a unique solution for the analysis window function
4[n]. In the oversampling case and when Hp has full rank,
there are infinite many solutions for the system (2.5). Among
them, the minimum norm solution was given in [17]

7;.x1 = H;xL(prLH;xL)Olﬂpxl 2.7)

where ! means the complex conjugate transpose. It was proved
in [18]-[20] that the above minimum norm solution is also the
most orthogonal-like solution, i.e., (a more general form was
given in [22])

IHLXI - thl”'

(2.8)

lvex: = hexall = | min
’YLxlalxL‘YL,u:#pxl

The DGT and IDGT can be also represented in matrix forms.
Let ’

C =(Co0,Co1,"+»Cr-1,8-1)T
s =(s[0],8[1],---,s[L - 1])T.
The DGT can be represented by the MN x L matrix Gprnxr
with its (mN + n)th row and kth column element
Yonlkl =7 [k = mAMW™ANE 0<m <M -1
0<n<N-1 0<kLL-1
The IDGT can be represented by the L x M N matrix Hyxpmn
with its kth row and (mN + n)th column element
honnlk] =hlk = mAM]WEANE . 0<m <M -1
0<n<N-1, 0<k<L-1

Thus .
C=GMNXL3 and 3=HL>(MNC. (2.9)

The condition (2.5) implies that
HpxmnGuMnxL = ILxL (2.10)

where Iy is the L x L identity matrix.

B. Iterative Time-Variant Filtering Algorithm

We next want to briefly review the iterative time-variant
filtering algorithm proposed in [5]-[7]. This algorithm is used
later in the denoising for the system identification problem.

The oversampling of the DGT adds redundancy, which
is usually preferred for noise reduction applications. From
2.1)2.5), (29), and (2.10), one can see that an L-
dimensional signal s is transformed into an M N-dimensional
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HLxMy‘

Fig. 2. Iterative time-varying filtering algorithm.

signal C, and M N is greater than L due to the oversampling.
Therefore, only a small set of M N-dimensional signals in the
TF plane have their corresponding time waveforms with length
L. Let Dasnxamn denote the mask transform, specifically, a
diagonal matrix with diagonal elements either 0 or 1. Let s
be a signal with length L in the time domain. The first step
in the time-variant filtering is to mask the TF transform of s

C) = DynxMNGMNxLS

where Dasn xarn masks a desired domain in the TF plane.
. Since the DGT Gaynxr is a redundant transformation, the
IDGT of C;, HyxmunC1 may not fall in the mask. In other
words. in general

GaxxtHixanCi # DunxMNGuNxLHLxmnCi
2.11)

where M N > L, which is illustrated in Fig. 1(e). Notice that
in the critical sampling case, i.e., MN = L, the inequality
(2.11) becomes an equality. An intuitive method to reduce the
difference between the right- and the left-hand sides of (2.1 1)
is to mask the right-hand side of (2.11) again and repeat the
procedure, which leads to the iterative algorithm

5 =5 @.12)
Ci+1 = DarnxMNGMNxLSI (2.13)
Sl+1.=HL)(A'INCl+19 l=0,1727"'- (214)

The above iterative algorithm is illustrated in Fig. 2.

Before going to the convergence, let us see what the LSE is.
Based on the definition, the LSE solution is the L x 1 vector
Z that minimizes

IGrtnxLT — DarnxanGrnxLs|
= min |GrnxrT — DrunxmunGunxisll. (2.15)

Then

Z=(Gh N 1GmnxL) ' Clyny L DMNxMNGMN LS.
(2.16)

Clearly, when the signal length L is large, the inverse matrix
computation is expensive. Although the error in (2.15) is min-
imized, the DGT of the least-squared solution Z may not fall
in the mask Dynxmn: GuNxLT # DyNxMNGMNxLT
when MN > L.

The complexity for the iterative algorithm (2.12)~(2.14) is,
however, low, which does not need to compute inverses of
large size matrices. By considering the DGT and IDGT in
(2.1)~(2.4), the computational complexity in (2.12)«2.14) is
proportional to the signal length ‘multiplied by the window °
length, i.e., LLw. Notice that the complexity of directly
computing the inverse matrices in (2.16) is proportional to L3.
Therefore, when the length of window functions h and « is
much shorter than the length of the signal s, the computational
complexity in the iterative algorithm (2.12)~(2.14) is much
lower than the one for the least-squared solution in (2.16).

We next want to list several related results on the above
iterative algorithm obtained in [6] and [7], such as the conver-
gence, the properties of the limit signals, and the relationship
between this algorithm and the LSE solution. These results
are based on the condition on the window functions & and «
obtained in [6] and [7]:

AN-1
S "IN + KR[N + k+mAM]
=0 -
AN-1
= Y RIN+KNIN +k+mAM] 2.17)
1=0

fork=0,1,---,N-1and m=0,1,---,M - 1.

Theorem 1: When the synthesis and the analysis window
functions h[n] and ~[n] satisfy condition (2.17), the iterative
algorithm (2.12)~2.14) converges.

There are two trivial cases where (2.17) holds. The first
case is the orthogonal case h[n] = v[n] for all integer n. The
second case is the critical sampling case AM = N. Notice
that the continuous Gabor transform is never orthogonal unless
the window functions are badly localized in the frequency
domain. This, however, is not the case for the DGT. The
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original chirp time waveform x{n}

| I

|,

i

0 50 100 150 200

original chirp Fourier spectrum IX(w)l in dB
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T T T

-1 1 1
E4 -3 -2 -1

Fig. 3. Transmitted signal z{n] and its Fourier spectrum .X'(w).

most orthogonal-like solution was studied by Qian et al. in
[18]-[20]. They showed that it is possible to have the analysis
window function « very close to the synthesis window function
h when h is truncated Gaussian. The error between h and 7 is
less than 2 x 10~¢ (see Fig. 4) while they are of unit energy,
and therefore, the error is negligible. It was shown in [6] that
the performance of the iterative algorithm strongly depends
on (2.17). When this condition does not satisfy, the iterative
algorithm may not converge.

Theorem 2: Under (2.17), the DGT of the limit § of the
iterative algorithm (2.12)2.14) falls in the mask Dyyxmn,
ie.

Ganxt3 = DynxmMnGunxts. . (2.18)

The above results say that as long as (2.17) on the analysis
and synthesis window functions is satisfied, the iterative
algorithm converges, and the limit signal has the desired TF
characteristics, i.e., its DGT falls in the desired mask. One
might ask whether it violates the known fact that an image
of a TF transform of a signal in the TF plane cannot be
compactly supported. This is because a signal cannot be time-
and bandlimited simultaneously. To answer this question, we
first need to know that the above known fact is true for
continuous TF transforms. Moreover, the proof of the fact is
based on the marginal properties of TF transforms. It may not
be true for discrete TF transforms. In other words, discrete TF
transforms may have compact support [S].

Theorem 3: Under (2.17), the first iteration 8; of the it-
erative algorithm (2.12)~(2.14) is equal to the least-squared
solution in (2.16), ie., 81 = Z.

With this result, one will see later that the iterative algorithm
(2.12)~(2.14) improves the least-squared solution when the
number of iterations increases, and meanwhile, one does not
need to compute the inverse matrix in (2.16).

III. DENOISING FOR RECEIVED
SIGNALS THROUGH A NOISY CHANNEL

In this section, we want to do noise reduction with the time-
variant filter studied in Section II for received sigpals in a
noisy channel. .

A. Some Parameters

The signal length is fandomly chosen as 500. The signal
z[n] for the transmitter is

n+15]* .
:z:[n]—cos([ 150 ] ), n=0,1,---,499. (3.1)

The waveform and its Fourier transform X (w) of the above
signal z[n] are shown in Fig. 3. Notice that since the Fourier
power spectrum [ X (w)|? will be used in the denominator in
the system identification, it should be as far away from zero as
possible. Since the noise-reduction performance of the time-
variant filtering in Section II depends on the localization of
the signal in the TF plane, the transmitted signal z[n] should
be as concentrated in the joint time and frequency domain as
possible. The synthesis and analysis window functions used in
this paper are shown in Fig. 4, where their lengthes are 256.
The synthesis window function is just the Gaussian function
and its analysis window function is the most orthogonal-like
solution given in (2.7). Their difference and the difference

between the left-hand side and the right-hand side of (2.17),

i.e., the condition error, are also shown in Fig. 4. One can
see that they almost satisfy (2.17). The time sampling interval
length AM = 16 and the frequency sampling interval length
AN = 2 in the discrete Gabor transform and its inverse in
Section II. These parameters are used throughout the rest of
this paper. The DGT of z[n] is shown in Fig. 5. The tail part

-
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synthesis window h{n] analysis window rin]
0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
0 0
0 - 100 200 300 0 - 100 200 300
x 10~ difference th{n}-f[n]I condition error
2 x 107
2
1.5
1 )
-2
0.5 200 20
o 100 10
[0} 100 200 300 k 00 m
Fig. 4. Synthesis and analysis window functions and the condition (2.17) test.
DGT of the chirp signal x{n]
10 20 30 40 50 60 -
Fig. 5. Discrete Gabor transform of signal x{n].
of the DGT in Fig. 5 is because of the discrete calculation z[n], and
aliasing.
In this paper, we use 20-tap LTI systems in our numerical N1
examples, where the number 20 is just randomly chosen. The ’ e
channel model is sln] = Z h{klz[n - k] 33
k=0
N-1
yln] = > hlklz[n - k] + v[n] (3.2) |
k=0 is considered to be the signal, z{n] is the transmitted signal

where N = 20 in the following numerical examples, v{r] is an as in (3.1), y[n] is the received signal, and h[n] is an LTI
additive white Gaussian noise and independent of the signal system (or channel) impulse response. The original SNR for
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LTI channel h{n] LTi channel Fourier spectrum
2 6 ‘
4
0 VQT ¢ N
(1) $%% é P l & © l [4] él 2
% 10 ° 1 2 4
sagngi s[n] no additive1r§oise 2 0 Fourier spectrum of g[n] .
10 200

: 0 100Lm I I
-10 0

0 re%gged signéoﬁn] 600 0 Fou‘:rier spe%trum of ;y;[n] 4

20 400
0 - 200
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Fig. 6. Example of LTI channel h[n]. signal s[n]. and received signal y[n] and their Fourier spectrum, where the SNR = —4.5 dB for the additive
white Gaussian noise. N .

10 20 30 40 50 60
Fig. 7. Discrete Gabor transform of the received signal y[n] in Fig. 6 with SNR = —4.5 dB.

the received signal is calculated by time waveform y[n] with SNR = —4.5 dB and the signal s[n]
499 without noise and their Fourier spectrum are shown in Fig. 6.
Z Is[n)|2 The DGT of the received signal y[n] with —4.5 dB SNR is
— shown in Fig. 7. In Fig. 7, one is still able to see the chirp
10log;, :;90 . pattern in the joint time and frequency plane, although it is
Zlv[n]lz impossible in the time or the frequency domain alone in Fig. 6.
n=0

B. Mask Design

In the following, we randomly generate the channel h[n]. As The pattern in the DGT domain of the above signal s[n] in
an example, a channel Fourier spectrum and received signal  (3.3) is similar to the one for the signal z[n] in Fig. 5. This is
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not only true for this particular example but is also the case for
our numerous examples. The reason is due to the following
analytic argument.

Assume the chirp signal zn] = exp(jen™) for some
constants 7 > 2 and ¢ # 0. Then

s[n) = Z h[k)z[n — k]
k
= Z h[k] exp(je(n — k)7)
k

r—-1
= exp(jen”) Z h[k] exp (jcz cm‘k’”")
k

1=0

=z{n] Z h[k] exp (jci c;n’k"")

=0
which is dominated by the original chirp z[n] for finite tap
LTI systems A[k]. It is because that the highest chirp order of
s[n],r, and the corresponding chirp rate are the same as those
of z[n], whereas the chirp order for the above multiplier of
z[n] in sn]

r—1
Z h{k] exp (jc Z cm_‘k"')
k =0
is only r — 1. As a special case, when r = 2
s[n] = z[n]G(2¢cn)
where G(w) is the Fourier transform of the signal h[n]z[n]
G(w) = Y hik]zlk] exp(~j2enk).
k

_ When the channel h[n) has only a finite tap, the function G(w)
is usually a smooth signal.

Since the transmitted signal z[n] is known to both trans-
mitter and the receiver, by the above property, its pattern in
the DGT domain may help in designing a mask in the DGT
domain for filtering noise. This is exactly the motivation for
the following design method of a mask Dynxmn in the
iterative time-variant algorithm (2.12)~(2.14). The subscript
MN x MN of the mask DyMNxMN will be dropped from
now on without causing confusion in understanding.

1) Mask Design Procedure:

Step 1) Implement the DGT Cpn . of the transmitted signal
z[k}.

Threshold the DGT coefficients Crm,n and have a
mask D, from Cmon

: _f1, if|C(m,n)| > to
De(m.n) = {0, otherwise

Step 2)

where to is a predesigned positive number that is
called thresholding constant.
Implement Steps 1 and 2 for the received signal
ylk], and design a mask D, with thresholding
constant ¢, from the DGT coefficients of y[n] with
another predesigned constant ¢, > 0.
The final mask is the product of D, and Dy: D=
D.D,.

Since the DGT of the signal z{n] usually dominates the
DGT of the signal s[n], the pattern in the DGT domain of

Step 3)

Step 4)
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the signal s[n] is usually in a close neighborhood of the
pattern in the DGT domain of z[n]. Therefore, the mask D,
is usually designed so that it covers a relatively large area,
i.e., the thresholding constant fo in Step 2 is usually chosen
not too large. Since the received signal y[n] is from a noisy
channel, the resolution of its DGT pattern may be reduced,
and therefore, the thresholding constant t; in Step 3 is usually
chosen to be not too small. Otherwise, the mask D, will cover
too much unwanted area. Let us see an example. The mask D
from z[n), the mask Dy from y[n], their product D = DzDy,
and the mask D, from the true signal s[n] are shown in
Fig. 8, respectively. The SNR in this case is SNR = -14
dB. The thresholding constants in Steps 1-3 are tp = 0.12
and t; = 0.15 - max(DGT(y)). It should be pointed out that
the above mask design procedure may be improved by using
more sophisticated designs. Possible improvements are

i) to find the optimal thresholding constants ¢o and ¢, by

training a large number of signals and systems;

i) to use more sophisticated statistical detection method
in the DGT domain for the received signal y[n] instead
of a simple thresholding in Step 3;
to smooth the mask D = DDy since the true mask D;
is usually smooth due to the nature of a chirp signal,
but D, from the noisy signal y[n] may not be smooth.
Some morphological operations, such as dilation, may
be used to smooth the mask D.

Another observation from our various numerical examples
is that the mask D, is the mean of the true mask D, in terms
of different LTI systems Rk[n].

ii)

C. Denoising Experiments

In this subsection, we want to implement the time-variant
filtering algorithm in Section II with three masking techniques:
using the mask D = D, from the transmitted signal, using
the mask D = D,D, as designed by Steps 1-4, using the
true mask D = D,. We run 100 tests in terms of different
LTI systems h[n] (randomly generated) and different additive
white Gaussian noises v[n] for each masking method and take
their mean SNR. Nine iterative steps are used in the iterative
algorithm (2.12)~(2.14). Fig. 9 shows the curves of the mean

'SNR versus iterative steps for the three masking methods.

First, we analyze the time-variant filter (2.12)~(2.14) with
the mask D = D,. From Fig. 9, the SNR drops after the
second iteration. This is because the mask we used is D =
D, which matches the transmitted signal z[n] and not s{n].
Although there is a similarity (see Fig. 8) in the TF plane
between the DGT of z[n] and the DGT of s[n], they are
not equal. The similarity is exactly the reason why the SNR
increases significantly in the first and the second iteration step.
The difference between z[n] and sn] causes the SNR to drop
after the second iteration. Notice that the mask D = D is
known to the receiver, and it is a good candidate in the time-
variant filtering if the iterative algorithm stops at the second
iteration step. :

We now analyze the performance of the mask D = D:Dy.
This mask rejects a lesser portion of the noise outside D, than
D, alone does, when the first thresholding constant o for D,
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Fig. 9. Mean SNR curves of the iterative time-variant filtering with the following masks: D = D;.D = D;D,. and D = D,.

in Step 2 is less than the one in designing D, alone. The reason
why this ¢y for D should not be large is for the conservation
because the mask D, is multiplied by D, in designing D.
It, however, happens because the beginning SNR’s are not as
high as the ones in the time-variant filtering with the mask D_,
which is shown by the solid line in Fig. 9. Since, in general,
D = D,D, covers relatively more signal information than
D, alone does, the SNR increases when the iteration number
increases. :

The third masking D = D, method is the ideal case. With
this ideal mask, about an 11 dB SNR increase with the iter-

ative time-variant filtering over the original SNR is achieved *
consistently. Notice that by Theorem 3, the first iteration is
equal to the conventional least squared solution. The iterative
time-variant filtering outperforms the least squared solution
by about 3 dB. ‘

To improve the performance of the iterative time-variant
filtering, what one can do further is to use more sophisticated
methods to detect D, and D,, in particular D, so that
their product D = D,D, is as close to D, as possible.
Besides what has been mentioned in the previous subsections,
directly minimizing. the difference between D = D, D, and
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D, with training signals is another potential approach. When
the original SNR is not too low, the chirp pattern of s[n] can
usually be seen clearly in the DGT domain of the received
signal y[n]. An example is shown in Fig. 10, where the original
SNR = 2.7 dB.

IV. SYSTEM IDENTIFICATION

In this section, we first use the iterative time-variant filter
(2.12)~(2.14) developed in the previous sections to reduce
the additive white Gaussian noise v[n] from the received
signal y[n]. In the iterative time-variant filter, for calculation
simplicity, we choose the first masking method studied in
Section III-C, i.e., the mask D = D,, for all calculations
in this section. With this mask, two iterations are used in
the time-variant filter in Section II-B. We then implement
the conventional system identification method, as shown in
Fig. 11.

The conventional system identification method used here is
the cross-spectral method

Sgz(w)
Sez(w)

Hpew(w) = - 4.1

where z[n] is the chirp signal defined in (3.1). It is compared
with the conventional method without denoising, i.e.,

Syz(w)
Szz(w) '

Hoa, () = @2

where z[n] is also the chirp signal. Since the system iden-
tification performance usually depends on the signal z[n]
transmitted, one might say that it is not fair to compare them
using the chirp signal that is preferred here for denoising but
might not be preferred for other methods. For this reason, we
also compare our new method with the conventional method
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new method using chirp signals, and time-variant filtering.
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Fig. 13. System identification examples: Original spectrum |H(w)|: identified spectrum without additive noise using the chirp signal; conventional method

with additive noise of SNR = —0.4 dB; new method with additive noise

using pseudo-random sequences

Syz(w)
Szz(w)

Hog, (w) = 4.3)

where Z[n] is a pseudo-random sequence.
Fig. 12 shows their performances, where 200 tests are used
for the mean SNR curves for the system spectrum versus the

original SNR. Our new method performs much better than
others. Surprisingly, even for the conventional cross spectral

of SNR = —04 dB.

method, the chirp signal in (3.1) outperforms pseudo-random
signals by about 6 dB. In Fig. 13, some identification examples
are shown, where the original SNR is ~0.4 dB. As a remark,
all system identification calculations used in this paper are
based on the Matlab Signal Processing Toolbox.

V. CONCLUSION

In this paper, we proposed a system identification method.
The proposed method is based on transmitting chirp signals
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Fig. 14. Cross correlations between the new noise #[n] (SNR = 0.74 dB) and the signal z[n] and the original noise v[n] and the signal r[n] (SNR = —6.4 dB).

and denoising followed by the conventional identification
method. The denoising method is based on time-variant filter-
ing in the joint time-frequency (TF) domain. Since transmitted
signals are chirp-type signals, they are well-localized in the
TF domain, and one is usually able to see their patterns in
the TF domain, even in a very low SNR environment. Due to

.this property, a significant SNR increase after a time-variant

filtering can be achieved. Our numerical simulations were
performed to illustrate this theory. The simulations done in this
paper were used simply for showing the potential performance
of the new approach based on time-frequency analysis and
synthesis techniques in very low SNR environment. Several
further improvements are possible. They are

i)  to use more sophisticated detection methods in design-
ing masks D for the iterative time-variant filter;

ii) to search the optimal reference signal z[n] so that its
Fourier spectrum is as far away from 0 as possible and
it localizes in the TF domain as much as possible;

iii) to use more sophisticated existing system identification
methods, such as the method recently proposed in [1]
by Shalvi and Weinstein, where the additive noise v[n]
in the system model is not necessarily independent of
the signal z[n].

The reason for mentioning iii) here is because of the fol-
lowing argument. Since a joint TF domain filter that usually
depends on the signal z[n] is used, the new noise ¥[n] after

. denoising and the transmitted signal z[n] may have similar

TF characteristics, and therefore, they may be correlated, in
particular, when the original SNR is too low. Such an example
is shown in Fig. 14, where the original SNR = —6.4 dB
and the SNR = 0.74 dB after the second iteration of the
time-variant filtering. From Fig. 14, one can clearly see that
the correlation between the new noise #[n] after denoising
and the signal z[n] exists, whereas it does not exist between

the original noise v[n] and z[n]. It should be observed from
our numerous numerical examples that this phenomenon only
happens when the original SNR is very low.
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A Family of Pulse-Shaping Filters with ISI-Free
Matched and Unmatched Filter Properties
Xiang-Gen Xia

Abstract— The raised-cosine pulse-shaping filter plays an im-
portant role in digital communications due to its intersymbol
interference (ISI)-free property. The ISI-free property holds after
matched filtering is performed. In this letter, we propose a
new family of pulse-shaping filters. These filters are ISI free
with or without matched filtering. Using these new pulse-shaping
filters, the computational load, and therefore the hardware cost
in demodulation for modem design, might be reduced in some
applications.

Index Terms—ISI-free property, matched and unmatched fil-
tering, pulse-shaping filters.

I. INTRODUCTION

HE raised-cosine filter
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plays an important role in digital communication systems. It
has been used extensively in modem design for both wireline .
and radio systems. This is mainly due to its intersymbol

“interference (ISI)-free property, i.e.,

1, n=0
h(nT.) = §(n) = {0‘ n=+142.-

where H(w) and h(t) are the frequency and the time response
functions, respectively. There have been extensive discussions
of this topic: see, for example, [1]1-[4].

Since the IS1-free property holds after the matched filtering
is performed for the received signal, the frequency response
G(w) of the transmitted waveform g(t) should be the square
root of H{w) in (1), i.e.,

Gw)= VHw) ad gt)=F'(GW) @
where F stands for the Fourier transform and F -1 means
its inverse. The matched filtering plays two roles here. One
is low-pass filtering that reduces the noise, and the other
is ISI reduction due to the ISI-free property of the raised-
cosine filters. Since the length of these filters is not short, the
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hardware implementation cost in current modem systems is
significant. However, it may occur in practice that, for some
users, the matched filtering is used purely for reducing the
ISL In this case, if the transmitted signal is already ISI free,
the matched filtering may not be necessary. The question then
becomes whether it is possible to construct pulse shaping filters
G(w) at the transmitter so that both the transmitted signal and
the signal after matched filtering are ISI free, ie.,

g(nT.) = 8(n) and h(nT,) = §(n)

where h(t) is the time-domain waveform of H(w) = |G(w)i2.
In this letter, we will positively answer this question by
proposing a family of such pulse-shaping filters.

II. A NEw FAMILY OF PULSE-SHAPING FILTERS

In this section, we present a new family of real-valued pulse-
shaping filters which have ISI-free properties with or without
matched filtering. |

Let g(t) denote the waveform in the time domain to be
transmitted. and let G(w) denote its Fourier transform. Let
h(t) be the waveform in the time domain after the matched
filtering of g(t) is performed, and let H(w) denote its Fourier
transform. Then, H(w) = |G(w)|?. Without loss of generality,
from now on, we assume T, = 1. The ISI-free property for
the waveform g(t) is

g(n) = é(n),
where Z is the set of all integers. This is equivalent to

neEzZ

Z G(w + 2n7) = 1. 3)
The ISI-free property for the waveform h(t) is
h(n) = é(n), nez
which is equivalent to
@

Y 16w + 2nm)? = 1.

We want to construct real-valued g(t) that satisfies d) and (4).
Let »(z) be a continuous function such that

o,
wa={7 131 )
and
viz)+v(l-z)=1, T€R ©)

where R is the set of all real numbers. An example of such
a y(z) is

0, zSO '
v(z) = { z%(35 -84z + 7022 - 20z%), 0<z<
1, z2>1

Y]
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which has almost fourth-order smoothness. The simplest form

for such v is
0. r<o
u(z):{r. 0<r<l

1, r21
which is only continuous, but not differentiable.
We determine g(t) by constructing its Fourier transform

G(w):

( 2
1, jw] £ =7
1 2 3 4
-(1 4 eim(372m)e-1), Sr<w< o7,
cw=91 | 39
5(1 _ im(@3/2m)w21) = 1) -3 <4w <37
LO, jw| 2 3™
®)

Notice that the parameter function v controls the width of
the transfer band of the filter G(w). The smoothness of the
function v determines the speed of the waveform decay of g(t)
in the time domain, i.e., the length of the filter. The smoother
v is implies the shorter the filter g(t) will be.

Theorem 1: The pulse-shaping filters g(t) defined by (8)
satisfy the following properties.

1) They are real valued.

2) They are ISI free by themselves, i.e.. g(n) = o(n).

3) They are ISI free after matched filtering is performed.

ie. h(n) = &(n).
Proof: To prove 1), we only need to prove G (~w) =
G(w) for 27 /3 < |w| < in/3

Gt (—w)=3(1-
=% 1-e

(1 _ e—i:(l—u(-—1+(3/2w)w)))

e—iﬂv((3/21r)(—.~‘+27r)—l))

-i1rv(2—(3/2x)u))

itu(3/2x)u—l))

+

€

where step 1 is from (6).
To prove 2), we only need to prove (3). The form of G(w)

in (8) satisfies (3) for 27/3<w< 4r/3
Y Glw + 2n7) = Gw) + Glw-2r)=1

This proves 2).
The property 3) can be similarly proved. ]
The frequency responses H (w) and G(w) for the above new
pulse-shaping filters in (8) with the v function in (7). and the
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Fig. I. The frequency responses |H(«)| and [G(w)] for the new pulse
shaping and the raised cosine filters with n = 1/3.

raised-cosine filter with @ = 1/3 in (1) and its square root are
illustrated in Fig. 1.

111. CONCLUSION

In this letter, we proposed a new family of pulse-shaping
filters. These pulse-shaping filters are ISI free with or without
matched filtering at the receiver. This property may reduce
the hardware cost in designing modem systems in some appli-
cations where the low-pass (bandpass) filtering is performed
before the matched filtering. It should be noticed that, aithough
the new pulse-shaping filters are real valued, they are not linear

phase.
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Abstract. In this paper, we consider the problem of extrapolation of a band-limited signal
outside a fixed interval from its (approximate or contaminated) values in that interval. We
propose a new extrapolation method that estimates the error between the extrapolated and
true values, and which also resolves the ill-posedness of the problem. The method is called
a modified minimum norm solution (MMNS) method. Both the continuous MMNS and its
discretization are studied. The error estimates hold for some classes of band-limited signals,
when the maximum magnitude of the data error is known. These classes of band-limited signals
are also characterized.

1. Introduction

Let f be a finite energy signal, i.e. f € L(R). Its Fourier transform f is defined by
I .
flo) = f fe"dr. , (1.1)
—o0 A

If there exists a positive number € such that f (w) = 0 when |w| > §, f is called Q band
limited. An § band-limited signal f can be represented by its inverse Fourier transform:

1

Q N
f)y= o f f(w)e™ dw. (1.2)
T J-o

It is known (see for example [1]) that a band-limited signal f is the restriction to the real
line R of an entire function defined on the complex plane C. Therefore, in theory, f is
determined everywhere by its values on an interval no matter how small this interval is.
This motivates the following band-limited signal extrapolation problem.

How does one practically extrapolate an Q band-limited signal f outside an interval
[—T.,T) when f(t) is given for t € [—T, T] with a certain contamination error?

The above extrapolation problem is interesting not only in theory but also in many
applications, such as spectral estimation (Papoulis [25]) and limited-angle tomography
in medical image reconstruction (Natterer [24]), where only limited observation data are
available. -

Since f is analytic, a trivial solution for the problem is to compute the derivatives f ™
at t = 0 by using the values of f in [—T, T] and then use the Taylor expansion. However,
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this method is extremely unstable due to the instability of the derivative computations.
Numerical differentiation is an ill-posed problem and the degree of ill-posedness (which can
be made precise using Sobolev negative norms) increases with the order of differentiation.
Therefore, researchers have been seeking other methods. Since the early 1970s there has
been considerable interest in this area, for example [4-8, 11-17,24-30, 32-36, 38-40]. Since
the problem itself is basically an inverse problem, it has been recognized that the existing
extrapolation methods are generally unstable in terms of inaccurate data. The extrapolated
values can change dramatically when the given data in an interval change slightly, see
for example [27]. There are also many modified algorithms that have been proposed to
improve the extrapolation performance. However, to the best of our knowledge there is no
extrapolation algorithm with which one is able to estimate the error between the extrapolated
and true values outside the given interval [—T, T] for any nontrivial class of 2 band-limited
signals, when the given data are inaccurate.

In this paper, we propose a new extrapolation method for band-limited signals that we
call a modified minimum norm solution (MMNS) method. With the MMNS method we
are able to estimate the error between the extrapolated and true values for some nontrivial
classes of band-limited signals, when the maximum magnitude of the error of the given
inaccurate data in a certain interval is known. This paper is organized as follows. In
section 2 we study the MMNS method for continuous-time signals. In section 3 we study
the MMNS method for discrete-time signals, which is a discretization of the method in
section 2. In section 4 we present tractable characterizations of the classes of band-limited
signals studied in sections 2 and 3. In section 5 we make several remarks.

" 2. Band-limited signal extrapolation in the continuous-time domain

In this section, we study the MMNS method for continuous-time band-limited signals.
Without loss of generality, in what follows we assume Q = 27 and T = 1 although we
continue to use §2 and T to emphasize where they appear. We also assume fe = f + 17
where 7 is the error signal that is continuous in time and |n(#)| < € for t € [-T,T],
and f.(t) for t € [T, T] are the given data. By normalization, we may assume that the

maximal error magnitude € < 1.
We first introduce some notation. Let L2[—D, D] denote the space of all signals f that

satisfy
A D 172
1l & ( f N f(t)lzdt) < oo

where D is a positive number or 00.

Let BL denote all 2 band-limited signals. For y > 0, let BL, denote all 2 band-limited
signals f € BL that satisfy the following condition.

For any § > 0, there exists a signal g; € L?[—T, T] such that

R 1 T )
fiw) = 7 f_ . gs(r)e"” dt .1

satisfies the following two properties:
I1f = fsllay <8 22)
and

I filloor < €87 @3
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where C is a constant that is independent of § and y, and f is the Fourier transform of f.

The physical meaning of the above subspace of all  band-limited signals is as follows.
For an © band- limited signal f, its Fourier transform f is supported in [—2, 2] and
f € LY[—, Q). The correspondence between the space BL of all  band-limited signals
and the space L[-, Q] of all finite L2 norm signals defined on [—Q, Q] is one-to-one
and onto. Therefore, for a general Q band-limited signal f its Fourier transform f may
not have any smoothness property. The subspace BL, contains all  band-limited signals
f with the following properties.

(i) The Fourier transform f can be approximated in the L? sense by a family { f;} of
T band-limited signals (entire functions of exponential order). This approximation holds
inside the frequency band of f, i.e. the support [—, 2] of f _

(i) The L? norms on the whole real line of the signals in the family { fs} may not be
uniformly bounded, but the rate of the divergence is not arbitrary. Rather the rate is related
to the rate of the convergence of { _ﬁ;} in L[-Q, Q] to f as § — 0.

In this approximations framework, what is gained is the smoothness while what is lost
is the boundedness of the family of L? norms on the real line. This trade-off is similar
to the bandwidth and the timewidth trade-off {29,30]. More precise interpretation and
characterization of the above subspace will be given in section 4.

For the maximal error magnitude € mentioned at the beginning of this section and any
number A > 0, let BT, denote the set of all signals g € L>[—T, T] such that

R / i’ﬂ— gs)ds — £.(0)| < forte[-T,T]. (24)
272 5 -
The basic idea for this subspace is to find signals in a neighbourhood of the inaccurate data
signal f,(t) for t € [T, T] such that the Fourier transforms of these signals are T band
limited.

For A > €, let g, be the unique element (the existence and umqueness will be shown
in lemma 2) in BT, that has the minimum norm:

ligellcry = min{ligllr); 8 € BT ¢} o @25)
Let o
1 T sin2n(s —t
fer®) = — , ——-—;—_(Tt——zg(';(s)ds (2.6)

which is called the MMNS of the continuous-time band-limited signal extrapolation problem.
We now have the following error analysis for the above MMNS.

Theorem 1. Let f, 5 be defined by (2.6) with the constant A = 2¢. If f € BL, for some
number y with0 < y < %, then

N fere@®) = FOISCe™™P forallt e R 2.7
where C is a constant independent of € and y.

Before we prove theorem 1, we establish two lemmas. We first recall the following
known results from operator theory of ill-posed problems. Let H; and H, be two Hilbert
spaces, and K be a bounded linear operator from H, to H,. Let X* denote the adjoint of
the operator K and K be the generalized inverse of X (see [9,19,20]). Let R(K*) denote
the range of the operator K*.

We recall that the (Moore—Penrose) generalized inverse KT of the operator K is
characterized by the following extremal property. For any g in the domain D(K!) =
R(K)+R(K)*, the element Kg is the minimal norm least-squares solution of the operator

R
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equation Kf = g. If R(K) is nonclosed, which is the case, for example, when X is a
compact operator with infinite-dimensional range, then the operator Kt is unbounded, so
the problem is ill-posed. The well known Tikhonov regularization uses the approximation

xo = (K*K +al)"'K*g >0
where I is the identity operator. It is well known that

lim x, = K'g for g € D(KT).

a—>
Without any ‘smoothness’ assumption on K'g, it is not possible in general to estimate the
rate of convergence of x, to K'g or to obtain an error estimate llxe — Ktg]| for fixed @ > 0.

In what follows we will use the following proposition (see, e.g., [10, 18]) which states that
if K'g € R(K*), a kind of smoothness condition, then an error estimate holds.

Proposition 1. If Kg € R(K*), say Klg = K *g* for some g* € H,, then
IKte - xll < Vallg™l.

Let us consider the operator F~! from L2[-Q, Q] to L?[—T, T}, a restriction of the
inverse Fourier transform (1.2), defined by:

Q
FA0 = Ft) = — [ f@edo  te[-T.T]. 28)
2r -Q
Then its adjoint (F~1)* is
1 (7 .
[(F7)*glw) = o | _g@Eds  wel-2,Q]
T J-T

From (2.8), (F“f)(t) = 0 for almost all ¢t € [T, T] if and only if f(w) = 0 for
almost all w € [~Q, Q). This implies that the null space N(F~') of the operator F~!
is the zero element. This also implies that the space R((F~1)*) is dense in LI[-Q, Q)
since Closure(R((F~")*)) = M(F~")! = L}, Q]. Thus we have proved the following
lemma.

Lemma 1. For any § > 0, there exists g5 € L*[—T, T] such that
If = Filly < 8

where
R 1 7 )
Ls@
= — d
4ﬁs(w) e /: Tgs(s)e 5

and j: is the Fourier transform of f.

By lemma 1 and its implication in the time domain, it is clear that the set BT, defined
by (2.4) is not empty when A > €. Since the set BT, is closed and convex, we have
proved the following.

" Lemma 2. For A > ¢, there is a unique element g ; in BT, such that

geallry = min{ligliry : g € BT, ,}.
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With the function g, as in lemma 2, define

1 [T .
fer@) = f sl s 2.9)

Then the MMNS £, , in (2.6) can also be represented as
Q

1 } o
fea®) = o /_ . Zea(@)e ™ dw.
With the signal f; in (2.1), define

- 1 2. .
i =5 [ At @.10)
2T -Q
We are now ready to prove theorem 1.
Proof of theorem 1. When f € BL, for y > 0, by (2.1), (2.2) the signal g; with
§ = 2n /+/282)e satisfies

A a2 2

If = il < Wit

where f:; is related to g5 via (2.1). In the time domain, by using the Cauchy—Schwarz
inequality and the above inequality we have

1 e . o .
[ f(t) — fs(0)] < 5—‘/ (f(w) — fs(w)e™do| < €
TiJ-q
where )

1 Q .
fo@) = 7 f fi(w)e™dw
T J-q

SR .
(2_—‘_1)5/- Zr_/ gs(s)eC"ds dw
-0 -T

1 j‘T sin2m(s — 1)
- 27?2 -7 s—t
where the convention Q@ = 27 made at the beginning of this section is used. By the
assumption

gs(s)ds

Ife() = f(D)I <€

we have

1fs(1) — fe@)] < 2e.

According to (2.4), we have proved that g; is in BT ¢ 5. Hence, by lemma 2 we obtain
8e.2¢llmy < 1823y llmy-

Moreover, by (2.1) and (2.3), we have
I8e2¢ Il my < 8an /vy iy < 21C QM /V2Q) Ve,

Since
[fe2e(®) — fe()] < 2 te[-T,T]

we have

| fe2e(8) = f(0)] < 3e te[-T,T]

. oy LA
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For the signal f5 in (2.10) and considering (2.2) in the time domain, we have

Ifs() — FOI < JZ_QB fort € R. o
Therefore, N
| fe. 2(t) — f5()] 36+é——§8 forte[-T,T]. 2.11)

For a > 0, let
X = (FYF' +aD) ™ (F7) (fe2e () = f5(0).
By using proposition 1 with K = F —1and 8 = ¢, and (2.1), (2.2), we have
1Ze2e = f5 = Xall@ = 1K' (fe2e — f3) — *all@
< Va(ligezella + lgslay)
< 2nCeVa,

where C is a constant, and g, 7 — f,; = K*(ge 2 — 85) from (2.1) and (2.9). On the other
hand,

1 TV2% V20 V29 V29 €
lxall@ < — (36 + 8) = (3 + £
a 7w 2 b4 2 |«
Thus,
T2 V2 €
NZe2e — folly < 2mCe™ Vo + ( + 5 ) i
7 |«
Using (2.2) with § = €, we have
TV/2Q V2 €
IZe2e — fll@ < 2nCe™” Vo + (3+ o );+e.

In the time domain, using the Cauchy—Schwarz inequality, we obtain

V2 N/
Tva <3+ 29) E-+-ej| for t € R.
T 2 o

|fee®) = FO] < ‘/2_ [27:C v Ja+

Therefore, estimate (2.7) in theorem 1 can be proved by taking & = €2*?)/3 and using the
assumption € < 1 made at the beginning of this section. O

3. Discretization of the MMNS method

Since in practice we usually process discrete-time signals, it is very important to consider
the discretization of the MMNS method proposed in section 2. To do so, we need some
notation.

For any number A with A > € and positive integer m, let MIZ(2m + 1) denote the ‘set
of (2m + 1)-dimensional vectors a = {a(k)} € C*"*! such that

Ly E’%i_k——) ® - £ (%)

1
im <A for —m<n<<m. 3.1

k=-m m m
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For A > €, let 22 = {z)(k)} be the unique element (the existence and the uniqueness will
be shown in lemma 4) in MI;(2m + 1) such that

llz:, | = min{lla}l; a = {a(k)} € le(Zm + D} (3.2)
where

m 1/2
lal é( 3 |a<k)|2) :

k=—m

Finally, let

1 1 & sin2n (£ —¢
wh(t) = F;kz ———L—(_”lt——lz,’,‘,(k). (3.3)
=—m m

Notice that, for a signal f € BL and any constants A > € 2> 0 and any positive integer
m, we can always construct the signal f., in (2.6) and the signal W2 in (3.3) from the
given data f.(t) for t € [-T,T). In other words, the MMNS f,, given in (2.6) and
its discretization W2 in (3.3) can be found for any f € BL using its known values on a
segment.

In practice, it is usually difficult to get the MMNS f, , in (2.6). A practical way to
compute it is to use the discretization form that is formulated by W} in (3.3). We have the
following convergence of the discretization W} of the MMNS.

Theorem 2. For any constant > with A > e, the discretization W}, converges to f. ; uniformly
on compact sets of R when m — oo.

It is interesting to notice that the convergence result in theorem 2 does not require any
additional condition for a band-limited signal f. In order to get an error estimation for the
MMNS, an additional condition, i.e. f € BL,, in theorem 1 is needed.

To prove theorem 2, we need several lemmas.

Lemma 3. For each fixed Ay > €, there exists M > O such that, whenm > M and A 2 A,
the set MI2(2m + 1) defined in (3.1) is not empty and ||z || < Cy,, where Cy, is some
positive constant and independent of m and A with A 2 A.

Proof. By lemma 1, for § = (A — €)/3, there exists g; € L?[—1, 1] such that
If = fillem < A —€)/3

where
1

n 1 .
fs(w) = > f gs(s)e"“ ds.
T Ja
Thus,

<A —€)/(3V7) for all t € R.

1 '2" R i
—itw _
l27r f_ | fi@edo— f0)
In other words,

1 = .1 ! ,
/ e — f g5(s)e"“dsdw — f(1)
T J

S 2

Since the space of continuous functions is dense in L2[—1, 1], there exists h; € C[—1, 1]
such that

<£(r-¢€)/3 for all t € R. (34)

llgs — hsllay < (A —€)/3.
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Thus,

1 1 (71 (!
E_/; '1""2 f(ga(S) ha(s))e"“’dsdw' 5 /2”5;/:1 85 (s) — hs(s)l ds dw

< V20— €)/(Bn) < (A —€)/3 for all t € R.

Y Ak DS LT

By (3.4) we have

1 2 —itw _~_ 1 isw
> e o / hs(s)e“?dsdw — f(t)| < QA +¢€)/3 forallt € [-1,1].
N That is,
- 1 _ .
—1—2 / ﬂ(—s——ﬁhs(s)ds - ﬁ(t)’ < @2r+¢€)/3 forall ¢t € [—1, 1]. (3.5
21 1 s—1

Since h; is continuous on [—1, 1], the following sum
1 1 & sin 27:( -1)
w2 ()

converges uniformly to

1 f!sin2n(s—1)

— ——FF— h d
27[2 ~1 s—1 J(S) S'
4" fort € [—1, 1]. There%ore, for (A — €)/3, there exists M > O such that, when m > M, we
have
11 sm2n’ (5 -1) k 1 sin27 (s — £)
Tim 2 hS(;)'zﬁf_,———s_ ha(s) ds
m m
< (A —€)/3 for [n] < m

Combining this with (3.5), we obtain

Z Sin27 (5~ ), (5)-#(2)

Let a(k) = h,;(;';—) for jk| < m. Then, {a(k)} € le(Zm + 1). This proves that the set

MI3(2m + 1) is not empty when m > M.
Moreover, the above M can be large enough such that, when m > M,

1
L 3" lawr < [ imsitas+1

k——m

<A forall |n| < m

1
- f heya(s)Pds + 1
-1

< Ugaosllay + A —€)/3)* + 1. }

Let(A—¢€)/3 <1 and

1 2
= {UIgag-asllny + D? +1}"

Then lemma 3 is proved. ) .}

L A S s

b2
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Similar to lemma 2, since the set le(ZM +1) is closed and convex, we prove lemma 4.
Lemma 4. For every m and X\ with )\ > €, there exists a unique element
= {z}(k)} € MI2(2m + 1)
such that
|z || = min{|la]| : @ = {a(k)} € MI}(2m + 1)}.

Recall that a family of functions of a complex variable is called a normal family if every
sequence of the family contains a subsequence which converges uniformly on compact sets.
It is known that a family of functions that is uniformly bounded in any compact set is a
normal family. We use this result in the proof of the following lemma.

Lemma 5. For each Ao (> €), the family of functions (W) (1) }ax,.m defined in (3.3) is normal
when t is extended to the complex plane C.

Proof. The functions \IJ; in (3.3) can be rewritten as

11 7 &
\I’:'(t) = m;/ e_""’ Z e'k"’/"’ A(k)d(l)
—2r

k=—m
_ _!__ 2:16_“&)( 1 1 i c]kw/mzl(k))
21 J_gn 2rm Rl
Thus,
erlzl p2r M
WA ()] < -4'-2‘ ’-' Z ~tkw/m x(k)lda)
m k=—m
eZﬂIzI 1 &
) DRG]
It*’—m
™2l (2m +1\'/?
S ( - ) Iz
lemma31 /2m+1\"2
< -~ ( mm+ ) Gy e for A > Ag zeC.
This proves that the family {W2},5,.m is normal. ]
Define
Ph(@) = —— Z ete/m 2 (k). (3.6)
k——-m

Lemma 6. For each Ao (> €) the family {qSA (2)}azr.m is normal and its limit functlons are
1 band limited.

Proof. The proof of normality is similar to the proof of lemma 5 by using lemma 3.

By Fatou’s lemma and lemma 3, it is easy to prove that all limit functions of the family™
{62 (@ hisam are in L2(R) when z is restricted to the real line R. Therefore, by the

Paley-Wiener theorem (see [1]), lemma 6 is proved. O

Lemma 7. Let g, be as defined in (2.5). For a fixed €, let h(A) = ||geallqy. Then the
Sfunction h()) is continuous for A > e. :

R R T g
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Proof. Let Ag and A; be any two positive numbers such that Ao > A; > €. For any A 2 A4,
define '

_ 1 !
8ea(w) = 7 ./;1 e’ ¥gca(s)ds.

e S et

Then

_ V2 V2 S
[8ea(w)| = C'”"—Ilge,xll(l) < —e“liger, oy for A > A1 L

| S L
— ® <
27 /: € 8ea (S)ds < P

This implies that the family {g, A(@)}h>y, is normal. Similar to lemma 6, its limit functions
are 1 band limited. Let A, be one of its limit functions. Let A(n) — Ay and suppose
that the sequence {Z. .} converges to h x, uniformly on compact sets of C. Then, there

exists A, € L[—1, 1] such that

- 1 LI
he (@) = E_/ e %he 1, (8)ds.
-1

By the definition of f, 1y We have

1

2'” .
5= fz g s (@)dw — £o(0)] = | feam®) = fe(D] < A() for t € [-1,1].

2

Let n — oo in the above inequality,

1
2

Thus, A, ;, € BT ¢ ,,. Therefore,

21 1
1 .
/ e—“wZTr f he o (s)e"? dwds — fe(®)| < 2o forre [-1,1].
-1

e llay 2 l8exollr)- 3.7

On the other hand, for any B > 0,
- B B
f |he o (@)*dw = lim / |8 amy (@)[2de
-B = J_p

00
< limn—»oof Ige./\(n)(w)|2dw = liMp— 00 l18e.1(n) “%oo)
-00

1 — 1
= E;hmnmngé.m%,) < 5 lgess 1%)-

Therefore,
1

1hesollioy € Nlgeaolln)-

N

In other words,

Bhesolly < ll8enollcry-
By (3.7) and lemma 2, we have proved that he 1, = &e,p- Therefore, we have proved

Tim () = h(ho). (3.8)

Now we want to prove that

lim A(%) = h(}o). , (3.9)
A—=hg .
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Let A; be any positive with 0 < A; < Aq. Let {A(n)} be any sequence of numbers with
A1 € A(n) < A(n+ 1) < Ao that converges to Ag. Define

ha(s) = (1 - M) Ben, (8) + —5-)— gea(s)  forse[—1,1]. (3.10)
: Ao — Ap —

1 &= (1 [} .
ha(t) = — e\ (—/ h,,(s)e“"’ds)dw
2 I 2 -1

Define

Then
in(t) - fu(t)] = if M2E =D, yds - £

A(n) — Ay 1 sin2n(s —t)
< (1 - —AO—_-):—I—) E;i/l —“s_—'“ge n(8)ds — fe (1)
A(n) — 1 ! sin 27r(s 1)
Ao — A 27r2f s — Seols)ds = fe(t)’

A(n) — Xy A(n)
g(l-ﬁ)x.+ e lo A(n).

This implies that h, € BT ¢ y(n)-
From (3.10) we have

An) — 1 A(n) — 2
h r<{! - — —_— .
lhallay < ( o — ) llge.x ll1y + o — [18e.2o Ity

Letting n — oo we obtain
M, collallay < llgess llay-
Since we have proved that h, € BT ¢ x(n),
lgeaamllay < llAally-
This proves that
limy s oo llgeamllay < 1gesollcn)-

On the other hand, the following is clear:

lgerimy Iy = l18e.xoll-

Thus,
Jim g llay = llgesllon
that is, (3.9) is proved. This proves lemma 7. 0

We are now ready to prove theorem 2.

Proof of theorem 2. By (3.3) and (3.6) we have
1 (= :
i) = — / ¢} (w)e "dw. -

If we can prove that every limit function of the sequence {W2} is f. ., theorem 2 is proved.
Assume hc A is a limit function of the sequence { \Il‘} Without loss of generality, we may
assume the sequence {W}} converges to he .- Since the family {W}} for a fixed A is normal
by lemma 5, the convergence is uniform on compact sets of C. By lemma 6, the family
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{#1} is also normal for a fixed A. We may assume that the sequence {#)} converges to fzs, A
uniformly on compact sets of C and -

- 1 (¥ . .
hea(t) = T /2” he(@)e ™ dw.

n | S L
hea(w) = —/ euwhe.}.(s)ds-
2 -1
Taking the limit as m — oo in
Al n
e — I £ <
i (5)- £ (5)|<x formi<m
and using the continuity of }-zm(t) and f.(¢) for t € [-1, 1], we obtain
lheal) — feI <A tel-111
This proves that hex € BT ¢ Thus,

IRexlly = lgenlly- A (3.11)

We next want to prove the reverse.inequality.

For A > €, choose p such that A > p > €. For this p, we have g, € BT . Using _
the same argument as in the proof of lemma 3, for (A — p)/3 there exists g, € C[—1,1] o
such that ' '

~ A—p
”ge.u - ge,u"(l) < “_3—

Thus, if we let

= 1 [!sin2n(s—1).
ge.y,(t) = Zr—z— [-1 ——s—_—t———ge'u(s)ds

then, |
z V20— :
18e.,(®) — fen I < —71——3—5 fort € [—1,1].

Therefore, there exists M > 0 such that when m > M we have

1 1 & osin2n(2-2) /& n 22+ u
i 2 e (1) - 4 ()| < SR <
== —-m m m .
By (3.1), this implies that e , = {e . (%)} € MI;(2m + 1). Therefore,
IGesll = 1251, g
Thus &
oot 241 < Wlim oo Gl = el - -
m oom m X m oom €, €,1li(1)" " . i
Therefore,
(hmmaoo'—n'"z:;;"z) < ”ge,ﬂ"(l) + "_3" ' (3.12) .
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On the other hand, for any B > 0,
B B
f @) = lim f 162 ()2
—B m—oo f_p

. mm
- f |62 () deo

—mm

(3.6)7— ikw/m —ikw/m
_nm,,,_,oof_m (an Z eikw/ A(k))( Z e—iko/m3; (k))

k=-m k———m
. m 1
= limm_,oo/ (—ﬁ—_zlz't (k)|2d(l)

= nm,,Hw-— Z Iz (k)2

k——m

Therefore,

R 1

e 20y < hmmmm Z |23, () 2.

=—m

Since

lheall?yy = 2 lhe
we have

nﬁmu%,) hmmm Z |2}, ()12,

k—-m

By (3.12),

lhealiay < lgewlla + 3
Letting 1 — A, by the continuity of A(X) on (¢, o0) in lemma 7, we have
lBeallay < lgealiq-
By (3.11), we have proved that
lBeallay = lgeallq)-
Since };(.; € BT, ;, by lemma 2, we have
};“(s) = gea(s) for s € [-1, 1], almost surely.

This proves that W) converges to fe as m — oo. O

4. Band-limited signal spaces BL,

The error estimate result in theorem 1 is for band-limited signals in the spaces BL,. The
conditions in (2.1)<2.3) defining these spaces are rather abstract. In this section, we study
their properties and simplifications. To do so, let us first review the prolate spheroidal
wavefunctions (see [25,29, 30]).

Let K be the following operator

= o f( )dr f € L}-T,T). ' 4.1)

e e
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It is clear that the operator K defined on L?*[-T, T} is self-adjoint and compact. Let ¢; and
A, k=0,1,2,..., be the eigenfunctions and the corresponding eigenvalues of the operator
K, respectively, such that ¢, k =0, 1, 2, ..., form an orthogonal basis for L*[-T, T] with

T
f #0808 =186 =B

where 8(n) = 1 when n = 0 and §(n) = 0 otherwise. Moreover, we have

I>A>A>->0 and  A— 0ask— oo (4.2)
From (4.1),
1 (7T sinQ( - ’
¢k(t)=—/ sinQt -1, ydr  te[-T.T1  k=0,1,2,.... 423)
A Jor m@-—1)

Although the above eigenfunctions ¢ are only defined on the interval [T, T}, they can be
easily extended to the whole real line R by letting ¢ take an arbitrary real value in formula
(4.3). By doing so, it was proved in [29,30] that the extended eigenfunctions ¢ for t € R
have the following orthonormality:

f 6, (et dt = 5(j — ).

These extended eigenfunctions ¢ are called the prolate spheroidal wavefunctions in [29, 30].
It was also proved in [29, 30] that these prolate spheroidal wavefunctions ¢¢, k =0,1,2, ...,
form an orthonormal basis for the §2 band-limited signal space BL. Thus, any f € BL can
be expanded as

f@®) = Zak¢k(t) teR : (4.4)
k=0
where
[o] 1 T
ax =/ F®OPe(t)dr = " /T F@)oe()dt (4.5)
and
1f Iy = ;ai 4.6)
and
£ 12y =D athe. @4.7)

=0
We now have the following result.

Theorem 3. Let f be an Q2 band-limited function and have the expansion (4.4), (4.5). If -

o0 a2

k 1
Z—]_—E/—B<oo forsomey, 0y <3
k=OA'k

then f € BL,.

Y A S e,



A method for band-limited signal extrapolation 1655

Proof. For A > 0, let D4 be the truncation operator on L2(R): for h € L2(R),

h(t) te[—A, A]
0 otherwise.

(Dph)(2) = {

By (4.4) and (4.5), letting F denote the Fourier transform, we obtain

A

f@)=Ff@) =) aF¢)

k=0
o0
- | =Y aDoFDrée(t)/h
. k=0
: -
=Dq )  —FDr¢:(t).
k=0 )‘k
Let
R n n ak
fo=) aF¢=Da) FDré.
k=0 k=0 "k
Then
n
fn = Zak¢k
k=0
S and
o
Ifo = fly= Y a}
k=n+1
N . [, 2]
I fo— fl}gy =27 > a?
k=n+1
and
~ n ag
fo= DQF(DT k}; A—kqsk).
Let
n a
gn=27Dr)
k=0 ™k
Then
a 1
fa= DQ&;F&!
and ; ‘
" a2 "L a2 '
lgallery = 3 EIellery = D & -
—0 Mk k=0 "k
Let -
2 "
2_ 4 _ : i
b= k=012 -

hit 4
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Then by the assumption

o0
B& Z b < 00
k=0
we have
llgn " o= Z bkA-—Zy/S
and

”fn f"(g) =2 Z bkll 2)'/3

k=n+1

By (4.2), for any § > 0, there exists N such that
M2P s fork>=N+1

and
M2P 5§ fork<N.
Then
A . A o0
I iy = flky <27 ) b}s <27 BS
k=N+1
and

N _wn 2
lenlizy < Y 635755 < BST5.
=0

For 0 < y < 1, there exists a constant C > 0 such that

8 ”gN”%T) <C

Let
A 1
fyaEms = Zr'FgN-
Then
fv = Daf 555
12575 — Fllay < V2Bm8
and
oz 1
(Jana) I famzsllic = ( 2B7s ) 7=||gN||m
< BY/Z(Z]T)(Y |)/28}’/2”gN”(T)
< BYC'2(2m)v D for0<y <

This proves that f satisfies (2.1)-(2.3).

=
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Before going to the next result, we recall a result on operator equations. Suppose that K
is a compact linear operator from Hilbert space H) to Hilbert space H,. Let 02>62>--
be the sequence of eigenvalues of the operator K*K, and v, vy, ... be the associated
orthonormal eigenfunction sequence. Let u, = 6;' and

Up = UnKvy. 4.8)
Then {u,) is an orthonormal sequence in H; and
Up = UnK*u,. (4.9)

We call the sequence {un, un; un} a singular system for the operator K. Then, Picard’s
theorem can be stated as follows (for details, see, for example [10, 20]).

Proposition 2. Let K : H; — H, be a compact linear operator with singular system
{ttn, Un; ). In order that the equation Kz = g has a solution, it is necessary and sufficient
that g € Ker(K*)* (= ClosureR(K)) and

[e ]
> u2i(g, un)? < 0
n=0

where () is the inner product on H,.
We now have the following result.

Theorem 4. Assume that f is Q band limited and with expansion (4.4), (4.5). Then:

(i) f € BL, with y = 0 if and only if its Fourier transform f(a)) or -—f( w) for
w e (-8, Q) is a piece of T band-limited signal;

(ii) f € BL, with y = 0 if and only if

0 az
Z A,_ < O0.
k=0 "~k

Proof of (i). ‘If part’: If — f (—w) for w € (—2, Q) is a piece of T band-limited signal,
then there exists g € L2[—T, T] such that

3 1 T isw
flw) = Ef_re g(s)ds we (-2, Q).

For any 8 > 0, let g = g. Then, f5(®) = f(o) for » € (-, Q). Let C = 3= |gllr).
Then

Ifs = flley=0<8
and
A 1 1
I fsllooy = ﬁll&"(r) = J——z———;||g||(r) =C.

Thus f € BL, for y =0.
‘Only if part’: If f € BLy, then for every § > O there exists g5 € L2[~T, T] such that

Ifs = fligy <8 and lgsll) < 2nC

where C is a constant and

R 1 T .
fo(w) = 3 f~ . gs(s)e " “ds.

[ > e O



[

1658 - X-G Xia and M Z Nashed
Thus, the function family { f};} is normal. In fact,

1@l € — T e lIgsll ey < CV/2TeTH! for all § > 0 z€C.

Therefore, for every sequence {8,) that tends to 0 when n — o0, there is a subsequence
{8x,} such that { f,; } converges to a T band-limited signal h uniformly on compact sets of

C. On the other hénd

1 (e . ‘ 2
/ e fy, (@)oo — F()| < —2‘/-;”5,,,.

2n Q

Letting j — oo, we obtain

Q

— | e "h(w)dw = f(1).
2 -Q

This proves ﬁ(a)) = f (w) for w € (—K2, ), that is f is a piece of a T band-limited signal.

Proof of (ii). Let H, = L2[—T, T} and H; = BLy. The inner product on Hj is the
usual L2(R) inner product. Let K be the integral operator given in (4.1). By part @),
K(LY~T,T}]) = BLy. By theorem 3, all finite linear combinations of the eigenfunctions
¢x are in BLy. Thus, Closure(BLo) = BL and therefore, BL = Closure(R(K)), where the
closure is under the usual L2(R) norm. Also,

K*f(t)=/°° wf(s)ds for f € BLo.

oo T(s—1)

From (4.8) and (4.9),

= uﬁK K*u,.
Hence, {u?} are eigenvalues of the operator KK* and {u,} are the corresponding
eigenfunctions. Since

K*éat) = f TSG04 (s)ds = gat)

oo (s —1)
we have
KK ¢n = Kn = Ann.
Thus by the completeness of the sequence {¢,} we have
Ap = ’2 and Gn = Uy.

By proposition 2,
o0 0 02
f e BLo iff » A(f da)? < 00 iff ) 2 < oo
n=0
This proves (ii). O

Combining theorems 1, 3 and 4, we have the following corollaries.

Corollary 1. For0< y < %, if

o0 . o0 2 -
f(f) = Zak¢k(t) and Z lagy/:i < 0
k=0 k=0 A.

then,
[ fe2e(t) — F@)I < Ce™P teR.

Wt At B e
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Corollary 2. Let f be Q band limited. If its Fourier transform f (w)forwe (-2,Q) isa
piece of a T band-limited function, then

[ fe2e(t) — f(2)] < Ce'3 teR.

5. Remarks

In [14, 17], approximations of 2 band-limited signals f are considered. These authors use
finite data of f on [T, T} to recover the whole f on [-T, T]. The optimal algorithm in
the worst case for the recovery has been found in [14, 17] as follows.

Let Oy, be an information operator which is a mapping O,, : BL — C™,

Onf = (f), f(82)..... f(tm)).

An algorithm @ is a function-valued mapping on O,, BL. The optimal algorithm using O,,

in the worst case takes the form:

O(Onf) = Zbk—————“"m': )
k=1 T %

where the coefficients by, by, ..., b,, are determined by the éolution of the linear system

m inQ(, —t
P R A

k=1 = b

We can see that this is similar to the discretization of the MMNS in (3.1)-(3.3).

As we have already stated, a band-limited signal is the restriction of an entire function
to the real line. But it is more than this. The Paley-Wiener theorem (see [1]) gives a direct
characterization of band-limited signals; namely, a signal in L%(R) is 27 band limited if
and only if it is the restriction of an entire function and is of exponential order on the
real line. This provides a powerful property for extrapolation of band-limited signals that
distinguishes the problem within the realm of analytic continuation of analytic functions,
and makes finer and stable recovery results possible. '

There is considerable literature on uniform and nonuniform sampling theorems for the
recovery of band limited and other classes of signals from a countable set of sample values
(see [2, 3, 12, 23, 37]), the simplest and most celebrated version being the Shannon-
Whittaker theorem, which asserts that a m band-limited signal can be reconstructed via the
cardinal series

(it —n)

= sin
fo =3 fm— >

n=—00 (t
Various error estimates (truncation, jitter, amplitude, and aliasing errors) are also known.
The problem of signal extrapolation from an interval (which usually has a small length) is
markedly different from the reconstruction of the signal f via a sampling expansion theorem
(which utilizes values of f on an appropriate infinite sequence with no accumulation point).
As we have shown BL, is the range of the Hilbert-Schmidt compact linear operator
(4.1) on L2[—T,T]. BLo is nonclosed in L2[—T, T]. Nashed and Wahba [21,22] have

-shown that the range of a Hilbert-Schmidt compact operator K is a reproducing kernel

Hilbert space (RKHS) Hp with reproducing kerqel

T
Q(I,S)=/ K(t, u)K (s, u)du
-T

St Al A
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where K(t,u) is the Hilbert-Schmidt kernel. The inner product on Hg is given by
(fi. Rlo=(K tfi, Kt fo) for fi1, f2in Hg, where K t is the Hilbert space (Moore—Penrose)
generalized inverse. Equivalently, .

T
i fi)o = f_ PO

where p; is the element of the minimal norm which satisfies Kp = f;, corresponding to f;
in BLg for i = 1,2. We recall that a Hilbert space H of functions f on an interval J is said .

to be a RKHS if all the evaluation functionals E;( f) = f@®, f € H, for each fixed t € J,
are continuous. Then by the Riesz’s representation theorem, for each 1 € J, there exists a
unique element, call it Qy, in H such that f(z) = (f, Q:), f € H, where (,) is the inner
product on H. Let Q(t,s) = (Qs, Q,) for s, t in J; this is the reproducing kernel (RK) of
H, and the space H with RK Q(t, s) is denoted by Hp. The space L2(J) is not a RKHS.
The Paley—Wiener space BL of band-limited signals with band [—7, 7] is a RKHS with

RK
sinm(t —s)

0@, 9) = n(t —s)

In [23] it is shown that there is a strong affinity between RK Hilbert spaces and sampling
theorems, and general sampling theorems were established for signals belonging to a RKHS
which is also a closed subspace of the Sobolev space H-!. The preceding remarks about
BL, and the other related spaces being RKHS may suggest that a broader framework within
which the type of extrapolation results derived in this paper may also hold.
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A Quantitative Analysis of SNR in the Short-Time
Fourier Transform Domain for Multicomponent Signals

Xiang-Gen Xia

Abstract—A quantitative analysis is given for the signal-to-noise ratio
(SNR) in the short-time Fourier transform domain for multicomponent
signals in additive white noise. It is shown that the SNR is increased
on the order of O(N/K'), where K is the number of components of a
signal, N/T is the sampling rate, and T is the window size. The SNR
increase rate is optimal for given K. For this result, the SNR definition
is generalized, which is suitable for signals not only in the time domain
but also in other domains. This theory is illustrated by one numerical
example. .

L. INTRODUCTION

Time-frequency analysis [11}-{12] has become an important tech-
nique in analyzing wideband/nonstationary signals in various applica-
tions including inverse synthetic aperture radar (ISAR) imaging [1],
biomedical signal analysis [2}-[3], speech signal analysis [4], and
FM radio communications [5). One of the most important features
of this technique is that it usually increases the signal-to-noise ratio
(SNR) in the joint time—frequency (TF) domain. This is particularly
advantageous for signals that are difficult to detect in the time or
frequency domain alone. The reason for this important feature can
be stated as follows. A joint TF transform usually spreads noise
from one dimension (the time or frequency) into two dimensions
(the joint time and frequency) while it usually concentrates a signal
in localized regions in the TF plane. A number of research results
on the estimation of time-varying frequencies have appeared, such as
[5}{7] with Wigner-Ville distributions. However, there is little on
quantitative analysis for the SNR increase for any joint TF transform,
which is certainly an iroportant issue in practical applications in signal
detection by using thresholding.

In the conventional SNR definition, the mean power is taken over
the whole domain of a signal. If the signal is stationary in this
domain, this definition works fine. However, if the signal is not
stationary in this domain, such as a single tone signal in the frequency
domain, this definition is no longer suitable. In this correspondence,
we first generalize the SNR definition so that it is not only suitable
for signals in the time domain but also in other domains, such as
the frequency domain and the joint TF domain. We then present a
quantitative analysis of the SNR increase rate in the joint TF domain
for the short-time Fourier transform with rectangular windows, where
multicomponent signals in additive white noise are considered. The
main result can be stated as follows.

R pumber of monocomponents in a signal;
T  window size for the short-time Fourier transform;
N/T sampling rate.
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Fig. 1. Single tone signal.

N-point discrete Fourier transform is performed in each window.
Then, the SNR in the joint TF domain is increased on the order of

. O(N/K) when the window size T is small enough.

This correspondence is organized as follows. In Section II, we
formulate a proper definition for SNR in different domains. In
Section ITI, we present the proposed quantitative approach to analyze
the SNR increase rate in the joint TF domain. A numerical example
is presented in Section IV to illustrate the proposed approach.

. SNR IN DIFFERENT DOMAINS

The conventional signal-to-noise ratio (SNR) is defined as the ratio
of the mean power of the signal over the mean power of the noise,
where the mean is taken over the whole time domain. It is formulated
as follows. Let y[n] be a distorted signal

yrl=z[n] +9n], 0<n<N-1 1)

where z[n] is a signal, and n{r] is an additive white noise with
variance 0. The SNR is defined as

SNR = Znco [#Ml”

e 22

This SNR is used quite often in describing the noise level relative
to the signal and in distinguishing the signal from noise in stationary
environments. When the SNR is too low, in general, it is impossible
to distinguish the signal z[r] from y[n]. However, for some special
kinds of signals z[r], such as narrowband signals, it is possible
to detect the signal in the Fourier transform domain, even when
the SNR is of negative decibels. An example is shown in Fig. 1,
where the SNR = —~11 dB and the signal = is a single tone
signal.

According to the SNR definition in (2.2), an orthogonal transform
does not change the SNR, i.e., the SNR in the transform domain is
exactly equal to the SNR in the time domain. This is because of the
energy preservation property of orthogonal transforms. This implies
that the SNR of the signal in the frequency domain in Fig. 1(b) is still
—11 dB. However, one can clearly see the signal in the frequency
domain. This suggests that the SNR definition in (2.2) is not proper to

1053-587X/98$10.00 © 1998 IEEE
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judge the possibility of detecting the signal in the frequency domain
in Fig. 1(b). It should not be surprising since the signal in Fig. 1(b) is
not stationary, and the mean power over the whole frequency domain
is, of course, not proper to the signal with a single spike.

The above observation suggests that the SNR definition is
transform-domain dependent and should relate to the bandwidth
of a signal occupied in that domain. We now introduce the following
SNR definition in a domain.

Suppose the expression (2.1) is already in a transform domain,
where 7 is the discrete variable in the transform domain. Assume
the additive white noise 7{n] in (2.1) occupies the full band in the
transform domain. For the signal z[n] of length N,0 < n < N—1, let

BE {n :0<n<N-1 and lz[n])? > 0.5 (X Iz[n]lz}
23)

where the number 0.5 comes from the common 3-dB bandwidth
definition in communications. Then, the SNR is defined as
SNR é ZnGB |x[n]|2
|Blo?
where |B| denotes the cardinality of the set B. Notice that this
definition is similar to the SNR definition in communications, where
the signal is only considered in its bandwidth. .

One can clearly see that the SNR in (2.4) is always greater than or
equal to the SNR in (2.2) because the mean in (2.4) is only taken over
the first large values in the whole domain. With the SNR definition in
(2.4), the SNR in the time domain for the signal in Fig. 1(a) is —8.4
dB, but the SNR in the frequency domain for the signal in Fig. 1(b)
is 16.3 dB. Although about 2.6 dB SNR is increased over the original
definition in (2.2), the SNR in the frequency domain is significantly
better than the old SNR, that is, —11 dB, in describing the signal
characteristics over the noise. The time domain SNR increase is
consistent for relatively stationary signals without dramatic jumps
in the time domain.

24

M. SNR IN THE JOINT TF DOMAIN
In this section, we analyze the SNR in the joint TF domain for the
short-time Fourier transform, where the SNR defined in (2.4) is used.
In order to do so, we first describe a multicomponent signal model.

A. Multicomponent Signal Model

Throughout the rest of this paper, we use the following multicom-
ponent signal model:

K
yt) =S n@® +n(t), 0<t<T G.D
k=1

where we have the following assumptions

1) t is the continuous-time variable and limited in the finite
observation interval [0, To).

2) n(t) is an additive white noise process with mean 0 and
variance ¢2. It is not differentiable at any time ¢t € [0, To]
and independent of zx(t),1 < k < A

3) For each k,1 < k < K, z«(t) is 2 monocomponent time-
varying signal, ie.,

2i(t) = Ap(t)e?* (3.2)

where Ax(t) is the slowly varying amplitude envelope of
zi(t), and ¢ (t) is the phase of zi(t). The magnitude of
the first order derivative A} (t) is upper bounded by Ax, i.e.,
|44 (t)] < Ax for a positive constant Ax, and the magnitude of
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the second-order derivative ¢} (t) is also upper bounded by ¢«,
i.e., |#}(t)] < ¢x for a positive constant ¢; for all € [0, o).
4) The K instantaneous frequencies ¢3(t), 1 < k < K, are
distinct.
Additional details on multicomponent signals can be found in [8].
It can be easily shown that the process y(t) in (3.1) has locally
stationary behavior [9]-{10] in the following sense:

[Ryy(t+u,s+ u) — Ryy(t,8)| £ Clul

for a positive constant C, where Ry, denotes the autocorrelation
function of y(t). .

As a remark, the nondifferentiability assumption 2) of 1(t) makes
sense. An example of such processes is the Wiener process; see, for
example, [13]. This assumption implies that any sampled segment
of n(t) in any time interval is a white noise and has flat Fourier
spectrum.

" (33)

B. Short-Time Fourier Transform for Multicomponent
Signals and SNR Calculations

For each monocomponent signal xx (t) in (3.1), by 1)-3), it can be
shown that there exists €; > 0 such that for any s € (ex, To — €x)

zi(s+1) = Ak(s)ei(ék(°)+¢£(a)t), t € [—ex, €]

where the linear term A} (s)t of t does not appear because of the
“slowly varying” assumption in 3) on the amplitude envelope Ax(t).
Since we have only finite many monocomponent signals zx(t) in
(3.1), there exists € = min{ex, 1 < k < K} >'0 such that for any
s€(e,To—¢) and any k,1 < k < K

Te(s+t) = Ak(s)ej(é"(’)'wz(’)'), tef-¢¢ .34

‘where € depends on the constants To, A'k, ér,and 1 < k< K.

With (3.4), at each time s € (¢, To — €), e apply N-point discrete
Fourier transform (DET) for the signal y(t) fort € (s—Z, s+Z] with
the sampling rate N/T for T = 2e. For convenience, we assume that
N is even. The DFT is

) N/2 ' T\ _ama
Rimil= 7= w;/w y((m + q>ﬁ)e

0<I<SN-1 (35

where m is in the range such that (m — N/2 + 1)T/N 2 0, and
(m + N/2)T/N £ To, ie.,

N-2 To 1
2 5"‘5(5‘"'2)1\"

The above P, can be decomposed into

K
Pyim,1] = ZP,,‘[m,I]'-*-P,,[m,I]

=1

where P, [m,1] and P,[m, 1] are defined for z«(t) and 7(£):

Py fm.1) 1‘%5 ((Jr)r"”)“z"ﬁ"i
ML = —F/—=—= x m vl 1
* ‘/ﬁqz—N/2+1 * ! N
0<I<N-1 (37
N/2

1 T 27njql
Pym,l|= —= n((m.;.q)_)e--ﬂ%’-

‘/J_v.q:-;/z-ﬂ N

0<I<N=1 (38
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Since 7(t) is a white noise process, for each m, the Fourier spectra
E(|P,[m,1]|?) are flat over the whole frequency domain 0 < I <
N — 1, as mentioned in Section III-A. This implies that the mean
power of the noise spectrum P, [m, 1] is also ¢*, which is the same
as in the time domain.

We next want to study the mean power of P, [m,[] for the signal.

Using (3.4)
N/2
1 T
P, [‘m,l] R —— A (m—)
‘\/-N_ q:—;/}l-l N
x e {oe(mF)+aL (mF)mta F-252 }
- % (m ) i{or(mB)+o4 (mF)mE}
N/2 & (mB)T~2mt
X Z ejq'k"'&v—.
q=—N/2+1
Therefore

[Pey[m, 1] =

' (m T
A, (mz) I\/Na (1 - M). (3.9)
N 2

By the assumption of distinct instantaneous frequencies ¢ (m ) for
1< k<K, the Founerpowerspectra [P, [m, 0 arelocatedat K
different frequencies ¢k(mN )T/(27),1 < k < K. This implies

K 2
Y| Pey[m,]
k=1
K ’ T 2
T ¢ (m )T
N gAk(mN>6(l— 5
K 2 ’ T
. T ¢ (m%)T
~ N kz:; Ak (mﬁ) 6(1—- —5=). 61
Therefore, for each fixed time s = m%, in the frequency domain

>NZ Ak(mz)

Now, let us oome back to the time domain signal y(m N) The noise
mean power is o2. The signal power at each time t = m % is

En (R < (-3

k=1 k=1
2

<KY,

2

E | Peylm, 1] 3.11)

0<l<h 1

(3.12)

K
Ax (m%;—)
k=1

By comparing (3.11) with (3.12), it is clear that the following
relationship between the SNR;; in the joint TF domain of (3.6) and
the SNR; in the time domain of (3.1) at the sampling points m %
SNR., N
> .
SNR, 0 51\'
where 0.5 comes from the SNR definition in (2.3)-(3.4). Therefore,
as the window size T is small enough

SNR:]
> 0(x)

Notice that the assumption of small enough window size T is
equivalent to the assumption of fast enough sampling rate N/T. The
derivation of (3.14) implies the following theorem.

(3.13)

(3.14)

the constant in the SNR increase rate O(N/K)

13 T g -

12p

1.1p

0.9+
08+
0.7

ot |

0'50 20 €0 80 100 120 140 160

mmborNdDFTm(mmme-ﬂBaMsmp&\gmosTlN)

Fig. 2. SNR increase rate.

Theorem 1: For a multicomponent signal with A many monocom-
ponents, the SNR in the joint TF domain with the short-time Fourier
transform with the rectangular window of size T and the sampling
rate N/T increases over the SNR in the time domain on the order of
O(N/K) when the sampling rate is fast enough. Given the number
K, this increase rate O(N/K) is optimal.

Proof: The first part has been proved by the above argument.
The optimality can be proved by taking Ak (t) = 1 and ¢ (t) = cxt?
for proper constants ¢x # 0 for 1 < k < K and noticing that the
inequalities in (3.9)—(3.12) become equalities in this case. 0

IV. NUMERICAL EXAMPLE

For simplicity in computations, we choose the following two-
component signal model:

2.8

)= 1 ), 0<t<2 @)

where 7(t) is an additive white Gaussian noise with mean 0 and
variance 02 = 9. The window size for the short-time Fourier
transform is 1/8. The following constant of the SNR increase rate in
terms of the number of points N of the DFT is illustrated in Fig. 2:

SNR;s /N
SNR. / -, “4.2)
One can see that for this particular signal,
SNR.s N
SNR, 0.55 il N — oo. 4.3)

From Fig. 2, one can also see that the constants of the SNR increase
rate have large variance when the sampling rate is not large enough
but almost become invariant when the sampling rate becomes large.

V. CONCLUSION

In this correspondence, we have quantitatively analyzed the SNR
increase rate in the joint TF domain with the short-time Fourier
transform over the SNR in the time domain for multicomponent
signals in additive white noise. We have shown that the rate of the
SNR increase is on the order of O(N/R'), where
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Smooth Local Sinusoidal Bases on
Two-Dimensional L-Shaped
Regions
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ABSTRACT. In this article, we construct two-dimensional continuous/smooth local sinusoidal bases
(also called Malvar wavelets) defined on L-shaped regions. With this construction, one is able to construct
local sinusoidal bases and lapped orthogonal transforms (LOT) on arbitrarily shaped regions. This work
is motivated from and useful in object-based video coding, where a segmented moving object may have
arbitrary shape and block transform coding of this object is needed. '

1. Introduction

Itis known that, in block DCT transform coding, one first decomposes an image on arectangular
region into 8 x 8 or 16 x 16 blocks and then does 8 x 8 or 16 x 16 DCT on each small block. Due to
the truncation of an image in the block decomposition, the blocking effects with block DCT degrade
the performance in decoding at a low bit compression ratio. To eliminate the blocking effects, the
lapped orthogonal transform (LOT) has been developed by Malvar et al. [15, 16}, where overlaps
between adjacent blocks in the decomposition are used. In LOT, a smooth transition of the DCTs
between blocks is performed and therefore the blocking effects can be eliminated, while LOT does
not increase the total number of pixels in the transform domain. For applications in image coding,
see also [1].

Coifman and Meyer [8] generalized LOT from discrete-time signals to continuous-time wave-
forms with a general description for window functions. They constructed a family of smooth local
sinusoidal bases, which are also called Malvar wavelets [18]. For more about local sinusoidal bases,
see[1,3,4,5,8,9, 10, 13, 17, 18, 19, 22, 23]. Further generalizations were made in recent literature,
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see for example (1, 3, 4, 11, 13, 14, 17, 19, 20, 21, 22, 23]. In particular, two dimensional nonsep-
arable smooth local sinusoidal bases were constructed in [22] on rectangular regions and in [23] on
“hexagons. Discrete forms were discussed in [11, 14, 20, 21]. An important requirement for LOT is
that the domain of an image must be rectangular. This, however, may not be true in object-based
video coding [2, 6, 7, 12]. In object-based video coding, one usually first segments moving objects

from image frames and then codes the motion vectors and the segmented moving objects. There are -

two intuitive ways to code a segmented object. One is to mask an object using a larger rectangular
window that completely covers the object and do block DCT/LOT for the image on the masked
rectangular region (see Fig. 1). This way usually wastes bits of coding when the shape of an object is
not regular due to the inclusion of redundant areas (see Fig. 1). The other is to code the boundary of
an object and code the content inside the boundary separately. Although this way does not include
redundant area, it does require block DCT/LOT to be applicable to images defined on an arbitrarily

shaped region.

mask

—

redundant area

segmented moving object
FIGURE 1. Segmented moving object and rectangular mask.

Another way to code a segmented moving object is between the above two ways, which masks
the object by using small rectangular blocks [see Fig. 2(a)]. With this masking method, the redundant
area is clearly smaller than the one in Fig. 1. The question now is whether LOT can be implemented
for the rectangular blocks in Fig. 2(a). To study this question, we decompose the mask in Fig. 2(a)
into two parts: arectangularly shaped region part as shown in Fig. 2(b) and a nonrectangularly shaped
boundary region part as shown in Fig. 2(c). For the rectangularly shaped region part, the standard
constructions apply. Thus, the question is reduced into whether LOT can be implemented for the
domain shown in Fig. 2(c). We call the regions with the shapes in Fig. 2(c) L-shaped regions. As
long as LOT is implementable on L-shaped regions in Fig. 2(c), LOT is implementable on all masks
shown in Fig. 2(a) which cover arbitrarily shaped regions. Based on this observation, in the rest of
this article we focus on local sinusoidal bases/Malvar wavelets/LOT on L-shaped regions shown in
Fig. 2(c).

This article is organized as follows. In Section 2, we construct continuous/smooth local sinu-
soidal bases on L-shaped regions. In particular, we present a set of conditions on two-dimensional
window functions for two-dimensional continuous/smooth local sinusoidal bases on L-shaped re-
gions. The conditions are different but similar to those in 8, 22, 23]. In Section 3, we present some
numerical examples of both window and local sinusoidal bases on L-shaped regions. In Section 4,
we briefly mention the construction of LOT on L-shaped regions, i.e., the discrete version of local

sinusoidal bases on L-shaped regions. We also present an application of LOT on L-shaped regions

v\“
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segmented moving object

(@)

mask

transform domain
decomposition

(b) | : ©

L

rectangular regions L-shaped regions

FIGURE2. Segmented moving object and nonrectangular mask.

in image compression. In Section 5, we conclude by discussing local sinusoidal bases on mixed
regions of L-shaped and rectangular regions.

2. A Theory for Local Sinusoidal Bases on L-Shaped Regions

In this section, we build a general theory for the construction of local sinusoidal bases on
L-shaped regions. We first describe the problem precisely.

An L-shaped region A to work on in the following is shown in Fig. 3(a). The region A consists
of three small rectangular regions: Aj, A2, and A3 as shown in Fig. 3(a). In what follows, small
bold English letters, such as x = (x1, x2), ¥y = (y1, y2) forreal x;, yi, I = 1, 2, always denote two-
dimensional vectors in R2. The goal of this article is to build smooth local sinusoidal bases/Malvar
wavelets/LOT defined on the L-shaped region A from sinusoidal bases on Aj.

Let fjx(x), k € Z, be an orthonormal basis defined on A; for the signal space L2(Aj),
j =1,2,3, where L2(B) denotes all square integrable functions on the region B. A trivial method
for forming an orthonormal basis for L2(A) is simply to use the truncation window x 4; (%), 1 for
x € Aj and 0 otherwise, and form fj,k(x)x,q] (x), j =1,2,3,k € Z,x € A. This is equivalent to
using block DCT when fj are products of two cosine functions with discrete forms. Clearly, the
basiselements fj k (x) X 4; (X) may have discontinuities which may cause blocking effects as discussed
in the Introduction. The purpose of the rest of this article is to construct continuous/smooth basis for
L%(A) from continuous/smooth local bases fjxdefinedon A;, j = 1,2, 3. The basic idea to achieve
the goal is similar to previous work: include overlaps between these three rectangular regions A;
and replace the truncation window x4; with some better designed windows W;. Before going to the
details, we define some notations.
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X2 :2
—
A, e b, Ay
B|B,
A, A, - i
- d 3
% A p P "R
A3
b
A 1
A 3

(@) (b)
FIGURE 3. An L-shaped region A.

2.1 Notations ~
We divide the L-shaped region A in Fig. 3(a) as follows [see Fig 3(b)]:

A = {x=(x1,x2): ao<x1<ay, bp<x;<bi}
Ay = {x=(x1,%2): a_y <x1<ag, bop <x2 < b1}
Ay = f{x=(x1,x2): a1 <x; <ao, b1 Sx2=<bo},

where ag = bg =0, a—1, b~y <0,and ay, by > 0.

The overlaps between the three rectangular regions A; are shown in Fig. 3(b), which are
bounded by the dotted lines. The symbols € and § denote the single width of the overlaps between
A and A3 in the x| direction, and between A; and A3 in the x direction, respectively, shown in
Fig. 3(b). The overlaps consist of four nonoverlapped regions Bj, 1=1,2,3,4,showninFig. 3(b):

Bl = {x=(x;,x2): —€ <x; <aq, § <x3<bi}

Ufx = (x1,x2): —€ <x1 <ap, —8x1/€ < x3 <8}
B, = f{x=(x1,x2): (—=x1,%2) € By}
By = {x=(x1,x2): a1 <x1 = —¢, bp <x3 <8}

U{x = (x1,X2): —€ < x| <aop, bp < x2 < —dx1/€}
By = {x=(x1,x2): (x1,—x2) € B3}

With these overlaps, the extended regions of A;, denoted by Aj shown in Fig. 4, j = 1,2,3, are:
Al =Bl UA, A2 = BUB3yU Az, and A3 = B3 U Aj.

2.2 Theory for Construction

In order to construct continuous/smooth orthonormal bases for L?(A) from local orthonormal
bases fjk(x), k € Z, for L*(A i), J =1,2,3, first we need to extend fjx(x) from the rectangular
regions A; to the L-shaped region A and then construct window functions W; to window the extended
local bases. We denote the extended bases of fjx as f"}‘k, where odd and even extensions are also
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......... B, .0 ~
. * Al
A2
, Bz .
A3
. ;&3

FIGURE 4. Extended regions of A;.

used as follows.

N S1e(x), X € Ay, :
fix(x) = fre(=x1,x2), x=(x1,x2) € By, @.n
0, xeAbutx¢ A,
Sr.e(x), X € A3,
= _ —fak (—=x1,x2), x=(x1,x2) € By,
far®) = = fak (x1, =x2), x = (x1,%2) € By, 2:2)
0, xe€ Abutx ¢ Ay,
. Sk (%), X € As,
fxx) = fik(x1,—x2), X=(x1,x2) € B3, 2.3)
v 0, X€ Abutx ¢ A3z,

where k € Z. Clearly, f, k(x). k € Z are supported on the extended region AJ of Aj, _] =12,3.
The conditions on window functions W; are the following.

(a) W (x)=1forxe A; butx ¢ By,

Wa(x) = 1forx € A, butx ¢ By U B,
. Wi(x) = 1 forx € A3 butx ¢ Bs.

(b) W;(x) =Oforxe Abutx ¢ A; forj =1,2,3.

() Wilx1, x2) = Wa(—xy, x3) for x = (x1, x2) € B1 U By,
Wa(xy, x2) = W3(x;, —x2) for x = (x1,x2) € B3 U Bs.

(d) W2(x)+ Wi(x)=1forx € B;UB,,
W2(x) + W2(x) = 1 forx € B3 U Ba.

The support of W; is also 4; for j = 1,2, 3.
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Finally, we form
uji(x) = fiaW;(x), x€ 4, j=1,2,3,keZ, 24)

and have the following theorem.

Theorem 1.

The functions uj  (x) for j = 1,2,3,k € Z, andx € A, forman orthonormal basis for L2(A)
when f;k(x), k € Z, x € Aj, form an orthonormal basis for L*(4)), j=1,2,3.
Proof. The proofs of the orthogonality and the completeness of u; x are similar to the ones for
Malvar wavelets on rectangular regions studied in [22]. The details are omitted here. O

Remark. The odd and even extensions in (2.1) through (2.3) are also called the folding processes
in[1, 3, 4, 13, 17, 19]. The window functions in (a) through (d) also can be characterized similar to
the one-dimensional case studied in [4]. O

3. A Family of Continuous/Smooth Local Sinusoidal Bases on
L-Shaped Regions

With the general theory in Section 2.2 we want to construct a family of continuous/smooth
local sinusoidal bases on L-shaped regions. The local bases f; x are separable sine bases as follows.

f ( ) 2 sin(zr (k +l)____x1—-a1)
X1, X by
Lk (1.X2) = = bo) 2] aw-a

. 1\ x2 —bo : ’
sin (71' (k2 + 5) by = bo) , @3.D
Friiky (K1 X2) = 2 sin(n’(k +1)————x‘_a°)
2.k1.k2 (X1, X2 N T Y D
. 1\ x2 — bo
sin (7r (kz + 5) g bo) , 3.2)
2 . 1\ xj—ao
k] = k P PN
sy (%1, %2) Sao—anGo-b (n ( ' 2) a1 —ao)
. 1\ xa—b_
sin( (la+3) 22371 (33)

where ky, k2 =0,1,2,....

Next, we construct window functions W;(x). The idea for the construction is the following.
We draw L-shaped lines in an L-shaped region A, which are parallel to the boundary of A (see
Fig. 5). We treat these lines as one-dimensional domains where one-dimensional window functions
are defined. The overlaps for these one-dimensional window functions are the intervals bounded by
the dots, i.e., the intersections of the L-shaped lines with regions By U B; and B3 U Bs. There are
two kinds of such L-shaped lines. For the first one, the overlaps are separated and for the second
one, the overlaps are adjacent but do not intersect except at the boundaries (see Fig. 5). Notice that
these lines are not closed, which is not like the case for hexagons studied in [23].

With the above idea, the following construction for window functions W; follows.
Step 1. 1-regions.

Wi(x) = l1lforxe Aibutx¢ Bz,
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- - |- The first kind lines
® & by
i The second kind lines
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* a, 10 & x
@ ’ !
Y b,
A
FIGURE 5. Window functions constructed from one-dimensional window functions.
® Wa(x) = lforxe Aybutx¢ ByUB3,
Wi(x) = 1forxe Asbutx ¢ Bys.
Step 2. O-regions. }
Wi(x) =0forxe Abutx ¢ Aj, j=1,2,3.
Step 3. Overlapped regions.
® On the region By U By,
sin (Z{x) —ao +¢€}), [x1] <€,8 <x3<by,
Wi(x) = Wi (x1,x2) = sin(%{x1_00+%€}) . kil < Rebo < x2 <8,
° cos (Z{x1 —ao +¢€}), X1l <€,8 <x2<b1,
Wi(x) = Wa(x1,x2) = cos (%{xl —ao+£az€}) , xl < %e,bg<xy<6.
On the region B3 U By,
® sin (5 {x2 — bo + 481)., lxal <8,a_1 < x1 < —¢,
W) =Wa i x2) = 4 gy (fx’:—g {x2—bo+ :flé}) , lxal < =28, —e<x1 <ap,
w cos (5 {x2 — bo +8}), x2] <8,a-1 < x1 < —¢,
3(x) = W3 (x1,x2) = COS(ixLl; {Xz-—bo+——:18}), xal < 5, —¢ <x < ap. -
® For general one-dimensional window functions W; (x), the construction of W;(x) on the regions

BjU B; and B3 U B4 can be obtained by replacing the above sin and cos with W; properly. Notice that
the above W (x) are continuous everywhere else inside A but at the origin and are basically generated
from one-dimensional window functions for smooth local sinusoidal bases. With the construction
of smooth one-dimensional window functions W;(x), it is possible to construct smooth W;(x) in

the sense of continuous 31tk Wj(xy, x2)/ axf' Zixg2 for some nonnegative integers k; and k; when

o (x1,x2) # (0,0).
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Extend the local bases fj k, .k, in (3.1) through (3.3) from the domains A; to A according to

_ the extension method in (2.1) through (2.3), which are denoted by fj.k;,kz- Then, form u; k, .k, (X) =

j},kl‘kz xX)Wj(x) for j = 1,2,3 and ki, k2 = 0,1,2,.... Since functions fj, i, (X) are zero at the

origin, the windowed basis elements u; «, k, (X) are continuous in the L-shaped region A. The above
window functions W; clearly satisfy conditions (a) through (d). This proves the following result.

Theorem 2. :
The above constructed functions uj g, k,(X), j = 1,2, 3 andky, ky =0,1,2,..., are continu-
ous and form an orthonormal basis for L*(A).

Next we want to see some numerical examples. Leta—; = —2,ap =0,a; = 1,b-1 = -3,
bo=0,b; =2,¢ =0.5,and § = 1. Figures 6 through 8 show the window functions W;(x) for
j =1,2,3, respectively. Figures 9 through 11 show the basis elements u;; 1(x) for j = 1, 2,3,
respectively. .

Window Function W1 : Its Contour

:I' Nt -1

[t
i
'A,mlll” ‘

-3 1 L
4 -2 =2 -1 0 1

FIGURE 6. Window function Wj(x) on A and its contour.

4. LOT on L-Shaped Regions and Application in Image
Compression

In this section, we want to briefly introduce the construction of LOT on L-shaped regions.
Then, we show a numerical example that shows that the SNR of the LOT on L-shaped regions
performs better than the one of the LOT on rectangular regions or the block DCT.

The main difference between discrete-time and continuous-time local sinusoidal bases is that
the variables x; and x; are integers and the overlap sizes € and & are also integers. As an example
of constructions of discrete-time local sinusoidal bases or LOT on L-shaped regions, we consider
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Window Function W2

Its Contour

T

1

-4 2 =2

-1 0

FIGURE 7. Window function W5(x) on A and its contour.

Window Function W3

Its Contour

1.5

0.5

-1

T u

-2

-1 0

FIGURE 8. Window function W3(x) on A and its contour.
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Basis Element

-4 -2
FIGURE 9.

Basis Element
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FIGURE 10.
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Its Contour
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-
[3]
T
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Basis u 1,1(x) on A and its contour.

its Contour

1.5

ZJJJUU

-
T
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-2 -1 0

Basis u3,1,1(x) on A and its contour.
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three 8 x 8 blocks shown in Fig. 12. The overlap sizes are € = § = 4. Notice that, unlike the
continuous-time case, the intersection set between By U B, and B3 U By in the discrete-time case is
empty. The overlaped regions are shown in Fig. 12, too. The rest is similar to the continuous-time
case by replacing the continuous variables x; = n; + 1/2. For more details, see [20, 21, 22].

We have implemented a numerical example on applications of LOT on L-shaped regions in
image compression. The test image has size 96 x 96 that is chosen for the convenience of the
blocking. The signal-to-noise (SNR) ratio curves are shown in Fig. 13. One can clearly see the
improvement of the LOT on L-shaped regions over the LOT on rectangular regions.

5. Conclusions

In this article, we have constructed continuous/smooth local sinusoidal bases/Malvar wavelets
on L-shaped regions, which is motivated from object-based video coding. It is not hard to generalize
the construction for mixed regions of rectangular and L-shaped regions, such as Fig. 14 with solid
lines. An important point for the construction is the design of overlaps. For the region shown in
Fig. 14, an overlap design is also shown with dotted lines. In this article, we use the construction
for L-shaped regions and the separable construction or nonseparable construction studied in [22] for
rectangular regions. Notice that the construction of continuous/smooth local sinusoidal bases at the
most outside boundaries does not include any overlaps. This approach has been recently used in [24],
for image compression.
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A New Prefilter Design for
Discrete Multiwavelet Transforms

Xiang-Gen Xia, Member, IEEE

Abstract—In conventional wavelet transforms, prefiltering is
not necessary due to the lowpass property of a scaling function.
This is no longer true for multiwavelet transforms. A few research
papers on the design of prefilters have appeared recently, but
the existing prefilters are usually not orthogonal, which often
causes problems in coding. Moreover, the condition on the pre-
filters was imposed based on the first-step discrete multiwavelet
decomposition. In this paper, we propose a new prefilter design
that combines the ideas of the conventional wavelet transforms
and multiwavelet transforms. The prefilters are orthogonal but
nonmaximally decimated. They are derived from a very natural
calculation of multiwavelet transform coefficients. In this new
prefilter design, multiple step discrete multiwavelet decomposi-
tion is taken into account. Our numerical examples (by taking
care of the redundant prefiltering) indicate that the energy com-
paction ratio with the Geronimo-Hardin—Massopust 2 wavelet
transform and our new prefiltering is better than the one with
Daubechies D, wavelet transform.

I. INTRODUCTION

OW THAT single wavelet transforms are well-

understood, multiwavelets recently have attracted much
attention in the research community; see, for example,
{26]-[32], where several wavelet functions
and scaling functions are used to expand a signal. The
multiwavelet functions constructed by Geronimo et al. [2]-[4]
have more desired properties than any single wavelet function,
such as short support, symmetry, and smoothness. Although,
in theory, they look more attractive than single wavelets,
not much more advantages in practical applications over
single wavelets have been found so far. In this author’s
opinion, the main reason behind this fact might be because of
their improper discrete implementations. For single wavelet
transforms, the discrete implementation automatically follows
from their multiresolution structure, i.e., tree-structured two-
channel filterbanks. In the tree-structured filterbank, lowpass
and highpass filters are explicitly used, which is tight with
the lowpass and the bandpass properties of the scaling and
wavelet functions, respectively. Although, for multiwavelet
transforms, the discrete implementation also follows from
their multiresolution structure, the tree-structured filterbank
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becomes a tree-structured vector filterbank [1], [8] (or time-
variant filterbank [13]). For a tree-structured vector filterbank,
the lowpass and the highpass properties for the two vector
filters are not as clear as those for the two filters in single
wavelet transforms. It has been found in [1], [16]-[17] that
in order to have a reasonable decomposition for discrete
multiwavelet transforms, prefiltering is necessary. A prefilter
design method was introduced in [1], [16]-[17], where the idea
is based on the computability of the multiwavelet transform
coefficients from uniformly sampled signals. Moreover, an
interpretation of the “lowpass” and “highpass™ properties for
vector filters was introduced in [1] for the prefilter design .
criterion. The criterion is, however, only good for the first step
discrete multiwavelet transform decomposition. The prefilters
designed with this method may be nonorthogonal, which
might kill the gain of the energy compaction in the transform
domain after the decoding is performed. In [31], a different
approach was proposed for perserving the orthogonality by
using the approximation order criterion. In [32], balanced
multiwavelets were studied, where prefiltering for these kinds
of multiwavelets is not necessary, but other properties, such
as the short supportness and the smoothness, are not as good
as the GHM multiwavelets. Notice that in [1] and [8], it was
also mentioned that when the “lowpass” filter H(w) satisfies
H(0) = I, prefiltering is not necessary.

In this paper, we introduce a new prefilter design by
combining ideas in single wavelet transforms and multiwavelet
transforms as follows. We first construct a function ¢(¢) with
the lowpass property, ie., its Fourier transform ¢(w) is 1
at w = 0, or $(0) = 1, from the multiscaling functions
and their translations such that ¢(t — n), n € Z form an
orthonormal set. Notice that the function ¢ does not have to
be a scaling function since the nested property is not required,
i.e., a dilation equation may not be satisfied. Due to the
lowpass property, a signal f(t) can be well approximated by
a linear combination of 27/2¢(27¢t — n), n € Z for a large J;
meanwhile, f(t) can also be well approximated by a linear
combination of the multiscaling functions and their trans-
lations due to their multiresolution approximation property.
Because of the lowpass property of ¢ and the orthogonality
of ¢(t — n), the coefficients in the linear combination of
27/24(27t — n), n € Z are proportational to f(n/2”); see,
for example, [23]-[25], and [35]. The conversion between
these two approximations naturally suggests a prefiltering
for computing the multiwavelet transform coefficients at the
highest resolution (or called approximation coefficients) from
the samples f(n/2’) of the signal f. Then, the rest of

1053-587X/98$10.00 © 1998 IEEE
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the multiwavelet transform coefficients (the lowest resolution
coefficients and the detailed coefficients) follows from a tree-
structured vector filterbank [1], [8]. We will see later that
the lowpass condition imposed on the function ¢ is strongly
related to the lowpass condition imposed on the combined
filters of the prefilters and the multiscaling functions, which
also relates to thte one imposed on the combined filters of
the prefilters and the cascaded vector filterbanks, i.e., multiple
steps of the discrete multiwavelet transform decompositions.
Notice that the above prefilter structure was first used in

[30], but neither the lowpass condition on the function ¢ nor

any rationale for introducing such ¢ was mentioned. Instead,
in [30], signal-dependent optimal prefilters, in terms of the
energy compaction criterion, were designed. The drawbacks
are 1) that the computational load is high and 2) the signal
dependency. In this paper, we systematically study the prefilter
structure and its rationale. The prefilters are signal independent
and orthogonal, and they only depend on multiwavelets.

[I. APPROXIMATION OF LOWPASS FUNCTIONS USING
MULTISCALING FUNCTIONS AND NEW PREFILTER STRUCTURE

In this section, we want to motivate a new prefiltering for
multiwavelet transform coefficient computation by approxi-
mating a lowpass function using multiscaling functions. To
do so. let us first briefly review multiwavelets and matrix
dilation equations. For more details about multiwavelets, see,
for example, [1]-[20] and [26]-{32].

Consider N compactly supported scaling functions ai(t),
l=12.... N and their corresponding N mother wavelet
functions wy(t). I = 1.2....,N, where all the translations
ot —k). ke Z. 1l=12...,N are mutually orthogonal,
and vy, % £ 2220(2t - k), j,k€2Z,1=1,2,...,N form
an orthonormal basis for L2(R). Let H(w) and G(w) be their
corresponding N x N matrix quadrature mirror filters with
N x N impulse response constant matrices Hy and Gi, k € Z,
respectively. Let

(1) & (e1(t).....on(O)T. W() 2 (Un(t), .., oN ()T
Then, we have the following matrix dilation equations.

d(t) =2 Hr®(2t ~ k) .1
k

V(t) =2 Ge®(2t k). (2.2)
k

The orthogonality implies

Hw)H'(w) + Hw+mnH (w+7)=Iy  (23)
. G(w)G'(w)+ G(w+ )Gl w+n)=In 2.4
Hw)G'(w) +Hw+ )Gl (w+7m) =08  (2.5)

where ! means the complex conjugate transpose, and Iy
and Oy denote the N x N identity and the all-zero matrix,
respectively.

For each fixed j € Z, let V; be the closure of the linear span
of g1k 2 2/ (2t —k),1=1,2,...,N, k € Z. Then, the
spaces V;, j € Z form an orthogonal multiresolution analysis
for L%(R).
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Let f € Vj; then
N

F®O =33 curbar) (2.6)

I1=1 k€Z

N
=YY carbak()

=1 keZ

» .
+Z Z zdg,j,k’l/)l,j,k(t) (2‘7.)

1=1 Jo<j<J k€Z

where Jp < J, and

ik = / F()bus(t) dt

and

dijk = / F(t)r;,k(t) dt.
Let

Cik 2 (Crjkr---rCNGk)T
and

djx 2 (A1 dn k)T
Then, by the matrix dilations 2.1)2.2)
Cj-1k = \/52 H,cjok4n 2.8

djo1k=V2Y_ GnCjokin 29

and

Cjn = ﬁZ(chj—l,2k+n + Grdj-12k4n).  (2.10)

k

Thus, to determine the multiwavelet transform coefficients
csk and dj i for Jp < j < J, k € Z from f, it is good
enough to determine the coefficients ¢k for k € Z from f.

Unlike single wavelets, where cjx is proportional to the
samples f(k/27) when J is large enough due to the lowpass
property of a single scaling function, the determination of ¢ x
for multiwavelet transforms from the samples of f(¢) is not
trivial. When the multiscaling functions have the interpolating
property, the determination was given in [1] and [16]-{17].
Furthermore, a necessary and sufficient condition for the
solvability of ¢ from the samples of f was also given
in [1). The relationship between the samples of f and the
coefficients ¢y automatically provides a prefiltering for the
multiwavelet transform computation from the samples of f.
For more details, see [1]. Unfortunately, the prefiltering based
on this relationship is usually not orthogonal, which seems to
limit the gain in the compression applications.

In order to present our new prefilter design method, i.e., a
new relationship between the samples of f and ¢, let us look
at the conventional wavelet transform coefficient computation,
which is usually referred as the Mallat algorithm. ,

Let ¢(t) be a single orthogonal scaling function. Then, for
any signal f(t), there exists J > 0 such that f(t) can be well
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approximated by ¢ x(t) £ 27/2¢(27t — k), k € Z, i.e.,

)= crrdri(t) @.11)
k

L where

Crk = /f(t)(ﬁ]yk(t) dt f(zil)

The relationship  in the above formula is because of the
lowpass property of $(t), i.e., $(0) = 1, see, for example,
[23]-[25] and [35]. The rest of wavelet transform coefficients
can be calculated recursively from c; x. The key point for the
validation of (2.11)—(2.12) is that the scaling function ¢(t) has
the lowpass property, and ¢(t — k), k € Z are orthogonal.
Motivated from the above observation, we now want to
construct a function ¢(t) from the multiscaling functions ¢(t),
l=1,2,...,N such that ¢(t) has the lowpass property, and
its translations ¢(t — k), k € Z are orthogonal to each other.
Notice that such ¢(t) may not be a scaling function because
it may not satisfy any dilation equation. As long as ¢(t)
has the lowpass property and the orthogonality, the properties
(2.11)~(2.12) hold for a signal f.
i Let

(2.13)

N
¢(t) =Y aln]pi(t-n

=1 n

where a;{n| are real constants. Then

N
dw) =Y Alw)hi(w) (2.14)

=1
where

Ar(w) (2.15)

= Za;[n]e'j"“’.

The lowpass property implies

N
$(0) = Y Ai(0)pi(0) = L. (2.16)

=1
The orthogonality of ¢{t — n), n € Z is equivalent to

> ¢(w + 2mn)? = 1. (2.17)

Write out the right-hand side of (2.17) as
E |¢(w + 27n)|?

N :
= Z (Z Ay (W), (w + 27rn))

n =1

N
x (Z AL (), (w + 2m))

‘3—1

N
Z Z Ay (@) 4], (w) Z é1,(w + 2mn)¢, (w + 2n).

1=11=1

(2.12)
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By the orthognality of ¢;(t — n), I =1,2,...,N, n € Z, it

is not hard to see that
3" (w + 2nn) i, (w + 27n) = (1 — I2)-

Therefore
N

3 1w+ 2m)|2 = Y |Aw) .

n =1
This implies that the orthogonality of ¢(t — n), n € Z is
equivalent to

N

S AWl =1 (2.18)
=1

In conclusion, we have proved the following lemma.

Lemma 1: A linear combination ¢(t) in (2.13) of multi-
scaling functions ¢;(¢) and their translations has the lowpass
property and the orthogonality of its translations if and only
if the properties (2.16) and (2.18) hold.

We now assume ¢(t) in (2.13) satisfies the lowpass property
(2.16) and the orthogonality (2.18). For a given signal f(t),
by the lowpass property of ¢(t), there exists a J > 0 such
that (see, for example, [35, Prop. 5.3.2, p. 142])

f&) =) ba22¢(27t — ) (2.19)

where
b, = / F(@)272¢(27t - n) dt.

An estimate of the difference

F@&) = ba272¢(27t — n)

is given in the Appendix. Notice that the only condition on
¢(t) for the relationship (2.12) to hold is the lowpass property,
i.e,, ¢(0) = 1. Therefore, similar to (2.12), we have

by x f(l), for large J.

Without loss of the generahty we may assume J =
simplicity. Then

f(ty =Y bag(t —n) and b:, x f(n).

0 for

From (2.13)
ft) = bud(t—n)

=Zb ZZaz[m]tﬁz(t-—n m)

=1 m

N -
=>> (Z bk_maz[m]) $i(t - k).
k

=1 m
This implies that
Z bk“mal[m] = Cl,O,In l = 1’ 2’ *
m

SN keEZ (2.20)
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Fig. 2. New prefiltering: Reconstruction.

where b, x f(n). n € Z. The above result (2.20) suggests
the following new relationship, i.e., a new prefilter, between
the samples f(n) of f(¢t) and the multiwavelet transform
coefficients ¢; 0.k

Lok = Z f(k — m)alm] .21

which is shown in Fig. 1.

By the orthogonalities of multiwavelets (2.3)~(2.5) and
prefilters (2.18). the reconstruction can be shown in Fig. 2.

The difference between the above prefilter bank and the
prefilter bank proposed in {1] is the following. The above
prefilter bank is not maximally decimated, i.e., redundancies
are introduced. Actually, the number of coefficients in the
transform domain is increased by N times. The prefilter bank
in [1] is, however, maximally decimated, and no redundancy
is introduced. We might want to ask, since we are usually
interested in reducing the redundancies, why we need to
introduce redundancy here. The answer here is two-fold.
First, proper overcomplete (or redundant) transforms plus
vector quantizations might perform better than nonredundant
transforms. This suggests that including redundancy in the
transform might not be a bad idea due to its better tolerance of
noise than nonredundant transforms. Second, from our numeri-
cal examples, the energy compaction with this new prefiltering
is better than the one with Daubechies D, wavelet transform
after the nonmaximality of the decimation in prefiltering has
been taken into account.

Notice that the energy of f(n) is preserved after the whole
discrete multiwavelet transform in Fig. 1 is performed due
to the orthogonalities of the multiwavelet transform and the
prefilter bank, although the prefilter bank is nonmaximally
decimated.

Motivated from the above prefiltering and the one in [1],
we propose the following general prefiltering for discrete
multiwavelet transforms, which is shown in Fig. 3, where
1 < K < N and the pre/post filterbank shown in Fig. 4
have the perfect reconstruction property. Specifically, when
the filterbank in Fig. 4 is paraunitary, the prefiltering in Fig. 3
is orthogonal.

II1. PREFILTER DESIGN AND E)EAMPLES

In this section, we first study the general N wavelet case
and then study the case of N = 2. Finally, we look at two
examples. One is the Geronimo—Hardin-Massopust 2 wavelet
prefilter design, and the other is the prefilter design for one of
the 2 wavelets obtained by Chui-and Lian in [20].

A. General N Wavelet Prefilter Design

Although, for the general prefilter bank in Fig. 3 (ie.
general K), the interpretation in the previous section does not
hold, the design of a prefilter bank A;(w) can be done using the
same criterion given in [1], where K = N. In the following,
we focus on the case of K = 1 and use the interpretation in
Section II to design the prefilter bank A;(w). Moreover, we are

"8
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only interested in designing FIR prefilter banks. The lowpass
and the orthogonality conditions (2.16) and (2.18) will be used.

Due to its orthogonality, any FIR prefilter bank A;{w) can
be factorized as (see, for example, [33], [34])

A (w) A,(0)
| =vw v G.1)
An(w) An(0)
where
y
,; l4(0)? =1 | 3.2
and

U(w)=In+ (e'j“’ - l)ulu, 3.3)

where u, = (ur1,.--,U-n) and the norm of the vector u,

is 1, ie.,

N
Z I'Un,-[l:', =1.
=1

From the matrix dilation equation, we have
1(0) 1(0)
= H(0) . . 34
én(0) én(0)
When H(w) is known, the vector (6(0), . ..,_tZ»N(O)) can be

solved. Then, the orthogonality and the lowpass property
(2.16) and (2.18) are equivalent to

N
> 140))? =1 and

=1

N
Y A0)E(0)=1.  (35)
=1
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The only constraint for the parameters ur; is that they need
to be of the unit norm for r = 1,2,...,p. The parameter p
determines the prefilter length and is called the order of the
prefilter (Ai(w))i=1,2,..,~v- When there is no Up(w) term in
(3.1), we set p = 0, i.e., the order of the prefilter is zero.

Additional conditions may be imposed on the above param-
eters. An important one is that the combined filters of A(w)
and H(w) need to be lowpass filters, and the combined filters
of A;(w) and G(w) need to be highpass filters. The reason
for this condition is the same as what was proposed in [1],
ie., we need to keep the “lowpass” part and decompose it
again and again but quantize the “highpass” part and therefore
keep the “highpass™ part as small as possible. This means the
“highpass” part needs to be the high-frequency part; otherwise,
it will have a lot of energy.

By thinking of the multiscaling vectors as the cascaded
version of the “lowpass” vector filter H(w), the new lowpass
property (2.16) for the function ¢ means the lowpass property
for the combined filters of the prefilters A;(w) and cascaded
vector filters H(w). Therefore, the above two lowpass condi-
tions [the new one (2.16) and the old one in [1]] somewhat
guarantee the lowpass properties of the all-approximation
multiwavelet transform coefficients c;x for Jo < 7 < 0.
The old lowpass condition in [1] is for the lowpass property
of the first step decomposition c_; and the new lowpass
condition in this paper is for the follow-up decompositions
cjk for Jo £ j < —1. The old lowpass condition in [1] can
be stated as follows.

There are N combined filters of Ax(w) and H(w) and N
combined filters of A;(w) and G(w). They are

N
Hi(w) £ (3.6)

Hl.k(w)Ak(w), l= 1727"~7N
k=1

and

\

Gilw) 2 Y Gra()Akw), 1=12,....N (D
k=1

respectively, where H(w) = (Hix(w))nxn, and G(w) =
(Gix(w))nx~. Then, the prefiltering, the first step multi-
wavelet transform decomposition, and their combined filters
can be shown in Fig. 5.

The lowpass property on Hi(w) is

N
ST Hi(rm)Ak(r)=0, 1=1,2,...,N. (338
k=1
The highpass property on G(w) is
A’
3 Gix(0)Ax(0) =0, I=12,...,N. (39

k=1

In conclusion, the above four conditions [i.e., (3.1), (3.5),
(3.8), and (3.9)] need to be imposed on the prefilter design
given a multiwavelet.
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Fig. 5. Combined filters of prefilters and multiwavelet filters.

B. Theory for 2 Wavelets

Since there always exists a solution for (3.4), there exist
two real constants a and b such that

a$1(0) + bdo(0) = 0.

Without loss of generality, we may assume $1(0) = ch2(0)
for a real constant c. Then, by (3.5)

cA;(0) + A2(0) = 1/¢2(0) =z, or A(0) =z~ cA1(0)

(3.10)

(3.11)
and
(1+ c2)A2(0) — 2zcA,(0) +2° —1=0, or
A1(0)=xci\/1+c2-—x2 3.12)

142

where z is an arbitrary constant. This implies that there always
exist solutions for (3.5).

When matrix G(0) has full rank, the only solution for (3.9)
is A;(0) = A2(0) = 0, which does not satisfy (3.5).

When matrix G(0) does not have full rank, there exist
solutions for A;(0), I = 1,2 in (3.9), ie., there exist two
real constants d and e such that

dA;1(0) = eAz(0).

Clearly, there exists a solution for A;(0) and A2(0) in
(3.11)~(3.13).

Now, the only condition left is (3.8). Although the existence
of the zeroth-order prefilter (4;(w), A2(w)) = (41(0), A2(0))
in (3.8) depends on the form of (4;(0), A2(0)) and H(0) (we

(3.13)
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will see later that there does not exist any zeroth-order prefilter
that satisfies (3.8) for the GHM 2 wavelets, but there does exist
for one of the 2 wavelets obtained by Chui and Lian in [20]),
we may analyze first order prefilters. In this case

(46 = (4 e - 1258 ) costsins))
«(40)
and )

Ay(m)) _ {—cos28 —sin26 [ A;(0)
" \Aa(r) ) T \—sin20  cos26 J \ Ax(0)
where 6 is an arbitrary angle.
For the same reason as before, when matrix H(r) has full
rank, there are no solutions for (3.5) and (3.8). Therefore, we

assume that matrix H(w) does not have full rank. Then, there
exist two real constants u,v such that

uAj(r) + vAs(m) = 0.
By (3.14) '
(vA2(0) — uA;(0)) cos(26) = (uA2(0) + vA1(0))sin(28).

Thus, there exists an angle 6 such that the above equation
holds. This proves the following theorem.

Theorem I: There exists a  first-order  prefilter
(Ay(w). A2(w)) that satisfies all conditions [i.e., (3.1),
(3.5), (3.8). and (3.9)] if and only if none of matrices H(x)
and G(0) has full rank.

As pointed out by one of the referees of this manuscript, the
condition in the above theorem always holds if a constant can
"be expressed by a linear combination of the translates ¢, (t—k)
and ¢,(t — k) of two scaling functions ¢, (¢) and ¢»(t).

C. Design Examples for the GHM 2 Wavelets

We first want to see the Geronimo-Hardin-Massopust 2
wavelets with the following matrix impulse responses of the
vector filters H{w) and G(w), respectively.

Ho = (-?//51/040 2—\543) = (93/51/?10' 1?2)
H, = (9\/:2/40 _3320)’ Hy = (—\/(21/40 g)
and
= (0 o) o= (o )
ore (5 sihm). o= (V" 8)
In this case
H(0) = (24:@ g—f) Hix) = (3 2:5?)
G(0) = (Lgé —0%)
From (3.4)

$1(0) — V2¢2(0) = 0. (3.15)

(3.14) -
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Solving (3.4) and (3.5), we have

. VI— 22 O S
A1(0) = ‘_”ﬁ_é&_&_i and A,(0) = ﬁ_;_x_
(3.16)

where  is a real constant with |z| < v/3. The condition (3.9)

-implies

V24,(0) = A;(0).

Therefore, we solve for A4;(0) as

“|%

Then, the prefilters in (3.1) can be written as

Arw) ) _
(1) -

S-S

3) 3.17)

Usw) = I + (7% - 1) (“" )(u,.l, ur2)

Ur2

where

with 42, + u2, = 1 for two real constants u,; and u.. It
is clear that (3.8) implies that the order p in (3.17) must be
greater than or equal to 1. Since matrices H(7) and G(0)
do not have full rank, by Theorem 1, there exists a first-order
prefilter satisfying the conditions. Let us see what it looks like.

(ﬁ;g:;) = (12 +(e79v =1) (Z?sg)(cos 6,sin 0))

x (\?) _1\/_5 (3.18)
where 6 is an angle. Thus
<A1(7r)) = (—cos20 -—sin20‘)<\/§)_}__
Aa(m) —-sin20 . cos26 1 )3
Therefore, (3.8) implies )
~Vv2sin28 +cos28 =0, or 8= % arctan -—? (3.19)

This proves the following theorem.
Theorem 2: The prefilter in (3.18) with the @ in (3.19).
satisfies all conditions we want, including the following.

1) the lowpass property of ¢(t), ie., #(0) = 1;

2) the orthogonality of @¢(t — n), n € Z and the orthogo- .
nality of the prefilter bank A;(w) forl = 1,2;

3) the lowpass property of the combined filters H;(w) for
1 =1,2 of Ay(w), ! = 1,2, and H(w); _

4) the highpass property of the combined filters G(w) for
I =1,2of A{w), ! = 1,2, and G(w).
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As mentioned earlier, the zeroth-order prefilter, i.e., without
any term U, (w) in (3.18), does not satisfy the above property
3), although it satisfies all the rest, i.e., 1), 2), and 4). Notice
that the above zeroth-order prefilter was first used in [16]
and [17). When the order p of a prefilter increases, better
lowpass and highpass combined filters H)(w) and Gi(w),
respectively, may be expected, and the length of a prefilter
also increases. The final version of the two prefilters in (3.18)
can be expressed as

A(w) = Qsin20 1 Gino2e

V3 2V3
1 )
+ (—gcos?@ + 57_5 sin 26) e v (3.20)
Ar(w) = —% sin 26 + %bos@
+ (% sin 20 + —%Sin@)e"ﬂ". (3.21)

D. Another Design Example

The second example of 2 wavelets is obtained by Chui and
Lian in [20}. The matrix impulse responses are

m=3(Be ) m=36 )

112 -1)2
H2-§<ﬁ/4 —ﬁ/4)
and

_ /=12 -1/2 _1(1 0
G°‘2(1/4 1/4 ) Gl"z(o ﬁ/z)
G = 1/-1/2 1/2
2= 5 \-1/4 174 )
The multiscaling and multiwavelet functions are supported in

[0.2] and have symmetry and certain smoothness. It is clear
that

_1f/2 0 _1/0 0
H(0) = 2(0 1= 7)‘ H(r) = 5(0 pE 7)
i1/0 0
G(O)=§(0 l+27>'

Conditions (3.9) and (3.5) imply that A;(0) = =*1 and
A2(0) = 0. In this case, the zeroth-order (Ay(w), A2(w)) =
(A1(0), A2(0)) = (1.0) already satisfies (3.8). As pointed
out by one of the referees of this manuscript, this result
holds not only for the above Chui-Lian multiwavelets but for
other multiwavelets as well as long as one of two scaling

functions is symmetric and the other of two scaling functions
is antisymmetric.

E. Numerical Simulations for the Combined
Filters Hi(w) and Gi(w)

In this section, we want to illustrate the combined filters
Hi(w) and Gi(w) for | = 1,2 for the GHM 2 wavelets.
Three sets of these combined filters are illustrated: without
prefiltering [Fig. 6(a) and (b)]; old zeroth-order orthogonal
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Fig. 6. Combined filters of the GHM 2 wavelets without prefiltering. (2)
[Hi(w)]. ) |Gi(w)]. :

prefiltering in [1] [Fig. 7(a) and (b)]; new orthogonal prefilter-
ing in Theorem 2 [Fig. 8(a) and (b)}.

IV. NUMERICAL EXPERIMENTS

In this section, we want to see the performance of our new
prefiltering scheme through some simple numerical exarhples.
The first test signal is the one hundredth horizontal line of
the Cameraman image with size 256 x 256, which is shown in
Fig. 9. Six experiments on energy compaction of the following
six transforms are done. The first transform T is the GHM
2 wavelets without prefiltering. The second transform T is
the GHM 2 wavelets with the old zeroth-order orthogonal
prefiltering with ¢; = 1/(10v/3) and €, = 7/(5V/8) in (3.29)
in [1]. The third one T3 is the Daubechies D, wavelets. The
forth and the fifth are the GHM 2 wavelets with our new
orthogonal prefiltering of the zeroth and the first order, respec-
tively. The sixth transform T is the Chui-Lian multiwavelet
transform in Section III-D with the zeroth-order prefiltering
(A1(w), A2(w)) = (1,0). Two step decompositions, ie., Jo =



E
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Fig. 7. Combined filters of the GHM 2 wavelets with the old zeroth-order
orthogonal prefiltering in [1]. (a) |H((w)|. (b) |Gi1(w)].

—2 and J = 0, in the first three transforms are performed,

where the lowpass part of the transformed signal is of length
64, whereas the bandpass part is of length 192. Since our new
prefiltering is nonmaximally decimated and the signal size in
the discrete multiwavelet transform domain is twice of the
input signal (or the output signals of the first three transforms),
three step decompositions, i.e., Jo = -3 and J = 0, of the
discrete multiwavelet transform with our new prefiltering are
performed for the last three transforms, where the length of
the lowpass part of the transformed signal is also 64, whereas
the length of the bandpass part is 512 — 64 = 448. Therefore,
we have the following energy compaction ratio definitions.

The energy compaction ratioes for the first three transforms
Ty for k = 1,2,3 are defined by

- Effes ly[n]?
Tt lyln]l?
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35

35

Fig. 8. Combined filters of the GHM 2 wavelets with their first-order
orthogonal prefiltering. (a) [H;(w)]. (b) |Gi{w)|.
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Fig. 9. First test signal.
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decomposition by multiwavelet transform

100

T

300 n s L L L
] 50 100 150 200 250 300

Fig. 10. Decomposition of the first test signal using the GHM 2 wavelets
without prefiltering.

decomposition by muttiwavelet transform

~50} J

100 N L L L
[+] 50 100 150 200 250 300

Fig. 11. Decomposition of the first test signal using the GHM 2 wavelets
with the old zeroth-order orthogonal prefiltering in [1].

TABLE 1
ENERGY COMPACTION RATIO COMPARISON FOR THE FIRST TEST SIGNAL
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Fig. 12. Decomposition of the first test signal using . Daubechies Dy
wavelets.

decomposition by multiwavelet transform

150 T

[ 100 200 300 400 500 600

Fig. 13. Decomposition of the first test signal using the GHM 2 wavelets
with the new zeroth-order orthogonal prefiltering.

TABLE II
ENERGY COMPACTION RATIO COMPARISON FOR THE SECOND TEST SIGNAL

T
GHM 2 wavelets without prefiltering 0.1374 r
GHM 2 wavelets with the old Oth order orthogonal prefiltering in {1] | 0.1247 Daubechies D, wavelets 0.0110
Daubechies D, wavelets 0.1123 GHM 3 wavelets with the new 1th order orthogonal prefiltering 0.0071
GHM 2 wavelets with the new Oth order orthogonal prefiltering 0.0896 Chui-Lian 2 wavelets with the Oth order orthogonal prefiltering | 0.0065
GHM 2 wavelets with the new 1th order orthogonal prefiltering 0.0722
Chui-Lian 2 wavelets with the Oth order orthogonal prefiltering 0.0944

where y[n] are the signals in the transform domain. The energy
compaction ratioes for the rest three transforms, i.e., with the
new prefiltering, are defined by

— Zi_fas ly[n]i?

S lylnll?
The transformed signals with the first three transforms are
shown in Figs. 10-12, respectively. The transformed signals
with the new orthogonal prefiltering of the zeroth- order

and the first-order for the GHM multiwavelets are shown in
Figs. 13 and 14, respectively. The transformed signal with

the zeroth-order orthogonal prefiltering for the Chui-Lian
multiwavelet is shown in Fig. 15. Their energy compaction
ratioes are listed in Table 1. ‘

The second test signal is the two hundred and fiftieth
horizontal line of the Einstein image with size 256 X 256.
The original signal, the transformed signal with transform T3
(Daubechies D, wavelets), the transformed signal with trans-
form T (the GHM 2 wavelets with the first-order orthogonal
prefiltering), and transform signal with transform T (the Chui-
Lian 2 wavelets with the zeroth-order orthogonal prefiltering)
are shown in Figs. 16-19. Their energy compaction ratioes are
listed in Table II with the same definitions as above.
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250, 100 200 300 400 500 600

Fig. 14. Decomposition of the first test signal using the GHM 2 wavelets
with the new first-order orthogonal prefiltering.
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Fig. 15. Decomposition of the first test signal using the Chui-Lian 2 wavelets
with the new zeroth-order orthogonal prefiltering:
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Fig. 16. Second test signal.
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Fig. 17. Decomposition of the second test signal using Daubechies Dy
wavelets.

150} “

50 " 2 i 2 s
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Fig. 18. Decomposition of the second test signal using the GHM 2 wavelets
with the new first-order orthogonal prefiltering.

A better energy compaction with the new orthogonal pre-
filter than with others can be seen from the above tables.

V. CONCLUSION

In this paper, we have introduced a new prefilter design tech-
nique for discrete multiwavelet transforms. The new technique
is based on approximating a function with the lowpass property
and the orthogonality of their translations by using linear com-
binations of multiscaling functions and their translations. The '
new prefiltering is orthogonal but not maximally decimated. It
deals with all decomposition steps for discrete multiwavelet
transforms, whereas the prefiltering in [1] only focuses on
the first step decomposition. The decimation nonmaximality
allows one to have more freedom in designing a prefilter so
that more desired conditions on the prefilters and the combined
filters of the prefilters and multiwavelet vector filters are
satisfied. Qur numerical examples show that a better energy
compaction ratio with the GHM 2 wavelets and the Chui-Lian
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[+] 100 200 300 400 500 600

Fig. 19. Decomposition of the second test signal using the Chui-Lian 2
wavelets with the new zeroth-order orthogonal prefiltering.

2 wavelets with the new orthogonal prefiltering than the one
with the D4 wavelet transform is achieved. This suggests the
potential applications of discrete multiwavelet transforms in
image compression/denoising.

It is known that any nonredundant orthogonal transform
keeps the energy. For example, the error energy after the
quantization in the transform domain in the compression is
equal to the error energy in the reconstruction domain in
the decompression. This no longer holds for the redundant
prefiltering/postfiltering studied in this paper. In the case
when the quantization errors are random, it can be easily
shown that the error energy in the reconstruction domain in
the decompression is one fourth of the error emergy in the
transform domain in the compression.

APPENDIX

The error

f) = 6.27%¢(27t - n)

where
bn = / F()272¢(27t - n) dt

can be estimated as follows. In the Fourier transfofm domain,

the L? error can be expressed as

2
dt

/

f&) = > ba272¢(27t — n)
2J
2]

x f(27(w - 2n7))| dw.

f(@w) = §(w) Y $(-w + 2n7)
2
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When f is bandlimited with bandwidth 2”r, the error can be
simplied as

/

2
dt

FO) = ba27?¢(27t = n)

L [T ier(i-E))

- 27 —-2J

Notice that $(0) = 1. When J is large enough and the
bandwidth W of the signal f is much smaller than 27, ie.,
W < 277, then

)

)

2
dt

£() = ba22g(27t - m)

1 w 2 2 i w 2 |
o [t (1= ()| ) aemo
This is because ¢(w/27) =~ 1 for large J for |w| < W.
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Orthonormal Matrix Valued Wavelets and
Matrix Karhunen-Loéve Expansion

Xiang-Gen Xia

ABSTRACT. In this paper, we study orthonormal matrix valued wavelets for
analyzing matrix (vector) valued signals based on matrix multiresolution anal-
ysis. We present a simple sufficient condition on the matrix filter H(w) that
leads to orthonormal matrix valued wavelets. The sufficient condition is analo-
gous to the one given by Mallat for scalar valued wavelets. The components at
each column of matrix valued wavelets form multiwavelets for a scalar valued
signal, where the orthonormality induced from the orthonormal matrix valued
wavelets is weaker than the one in the current literature on orthonormal multi-
wavelets. With the new orthonormality, one is able to construct orthonormal
matrix valued wavelets simitar to the conventional multiresolution analysis
based orthonormal wavelets. Moreover, we show that the new orthonormality
provides a complete Karhunen-Loéve decomposition for matrix valued signals.

1. Introduction

While wavelets and multiwavelets have been extensively studied lately for a
scalar-valued signals, see for example [1]-[17], there are only a few researches, [1],
on matrix (vector) valued wavelets for matrix (vector) valued signals. In practice, it
is however often to encounter matrix (vector) valued signals, such as video images,
multi-spectral images and color images. A significant difference between matrix
(vector) valued signals and scalar valued signals is that there are correlations for a
matrix (vector) valued signal not only in the time domain but also between its com-
ponents (or the spatial domain) at a fixed time while there is correlation for a scalar
valued signal only in the time domain. The aim of the construction of orthonormal
matrix valued wavelets is to decorrelate a matrix (vector) valued signal in both the
time and the spatial domains. As a side result, the components at each column
of orthonormal matrix valued wavelets also form multiwavelets for scalar valued
signals. We will see later that the orthonormality for the multiwavelets generated
from orthonormal matrix valued wavelets is weaker than the orthonormality in cur-
rent literature on orthonormal multiwavelets, [4]-[15]. In [1], orthonormal matrix
(vector) multiresolution analysis was introduced for the purpose of constructing
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orthonormal matrix valued wavelets. However, the theory in [1] is not complete in
the continuous time case in the sense that there is not a simple sufficient condition
on- the matrix quadrature mirror filter (MQMF) H(w) that leads to orthonormal

matrix valued wavelets.
In this paper, we first re-introduce matrix valued signal spaces and matrix

valued multiresolution analysis studied in [1]. We then present a simple sufficient
condition on the MQMF H(w) for constructing orthonormal matrix valued wavelets,
which basically proves the conjecture proposed in [1]. A connection between or-
thonormal matrix valued wavelets and orthonormal multiwavelets in the current
literature is studied. It can be seen that the orthonormality for the multiwavelets
induced from the orthonormality of orthonormal matrix valued wavelets is weaker
than the orthonormality for multiwavelets in the recent literature in the continu-
ous time waveform case, see for example [4]-[15], while they are the same in the
discrete time filterbank case. The weaker orthonormality in the continuous time
case provides a weaker sufficient conditon for constructing multiwavelets with this
weaker orthonormality. ,

In the second part of this paper, we show that the orthonormality studied in this
paper for matrix valued signals gives a complete Karhunen-Loéve decomposition for
matrix valued signals, i.e., this orthonormality provides a complete decorrelation
for a matrix valued signals in both the time and the spatial domains.

2. Matrix Valued Signal Space and Multiresolution Analysis

For convenience, we only study N x N matrix valued signals and wavelets. We
introduce some notations first.

2.1. Matrix Valued Signal Space. Let
CV*N = {A: Ais an N x N matrix with entries in the complex plane C},
and »
L2(a,b;CVN) & {£(t) = (fea())nxn © fealt) € L¥(a,b),1 < kIS N}

The signal space L2(a,b;CV*V) is called a matrix valued signal space. When
a = —oo and b = 0o, L%(a, b;CV¥*N) is also denoted by L*(R, CN*N).
For any A € CVN*N and f € L?(a,b; CV*¥), the products

Af, fA € L?(a,b;CV*N).

This implies that the matrix valued signal space L%(a,b; CY*") is defined over

CV*N and not simply over C.
Let || - ||as denote a matrix norm on CV*V. For each f € L*(a,b; CV*M), | f|
denotes the norm of f associated with the matrix norm || - || as

b 1/2
(2.1) Mué(/'mumxa) .

For f € L?(a,b; CV*¥), its integration [ f(t)dt is defined by the integration of its )

components.
For two matrix valued signals f,g € L?(a,b; CV*V), (f, g) denotes the integra-
tion of the matrix product f(¢)g!(¢):

(2.2) mQ%Lﬂ%WW,

k0 K s S
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where ! denotes the conjugate transpose. For convenience, we still call the operation
(, ) in (2.2) inner product although it is not the inner product in the common sense.
With the definition (2.2) it is clear that (f,g) = (g, f)t.

A sequence ®x(t) € L?(a,b;CN*N), k € Z, is called an orthonormal set in
L%(a,b; CNXN) if

(2.3) (Bx, @) = 6(k — DIy, k,l€Z,

where 6(k) = 1 when k = 0 and §(k) = 0 when & # 0 and Iy is the N x N identity
matrix. A sequence ®4(t) € L%(a,b;CN*N), k € Z, is called an orthonormal basis
for L?(a,b; CN*N) if it satisfies (2.3), and moreover, for any f(t) € L?(a,b; CN*V)
there exists a sequence of N x N constant matrices Fj such that

(2.4) f(t) =) Fe®(t), forte [a,b],
kEZ

where the multiplication Fi®(t) for each fixed t is the N x N matrix multiplication,
and the convergence for the infinite summation is in the sense of the norm || - ||
defined by (2.1) for the matrix valued signal space.

2.2. Matrix Valued Multiresolution Analysis. We next define matrix val-
ued multiresolution analysis, which is similar to the conventional multiresolution
analysis.

A matrix valued multiresolution analysis (MMRA) of L?(R, CV*¥) is a nested
sequence of closed subspaces V, j € Z, of L(R, CN¥*V) such that

(i). V; CV 4, j €L,
(ii). UjezV; is dense in L*(R,CY*N) and N;ezV; = {0}, where 0 is the all
zero matrix,
(iii). f(t) € V; if and only if f(2t) € V1,1, j € Z,
(iv). There is a ® € Vj such that its translations ®(t — k), k € Z, form an
orthonormal basis for V.

The above definition for an MMRA is notationally similar to the one for the
conventional multiresolution analysis (MRA). We call ®(t) a matriz valued scaling
function (or simply scaling function) for the MMRA {V;}. Since ®(t) € Vo C V,,
there exist constant N x N matrices Hy, k € Z, such that,

(2.5) B(t) =2 Hp®(2t - k).

Let k

(2.6) H(w) = ) Hge ™.

Then, k

(27) $(w) = H(3)3(3) = H(H(Z) - $(0),

where it is assumed that &(w) is continuous at w = 0. This assumption is satisfied
when H(w) has only finite terms and H(0) = Iy. In this paper, for convenience
we assume $(0) = I, which makes an important difference between matrix-valued

S . o ST
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wavelets and multiwavelets from the matrix scaling equation or refinable equation
point of view. By this assumption,

- w w b w
(28) b() = HHC -+ = [ B0

The equation (2.7) implies
(2.9) H(0) = Iy, or Y Hi=In.
k

It is not hard to see that the orthonormality of ®(t — k), k € Z, (or the
orthonormality of MMRA {V;}) is equivalent to

(2.10) 3" &(w + 2mk)® (w + 27k) = 2nly, Vw € R.
k

In terms of the filter H(w), the above orthonormality implies

(2.11) H(w)H'(w) + Hw + m)H (w + ) = Iy, Yw €R.

The orthonormality (2.10) is in the continuous time domain for continuous-time
waveforms while the one (2.11) is in the discrete time domain for discrete-time

filterbanks.

Assume we have the above MMRA and H(w). We now want to construct its
corresponding matrix valued wavelets that form an orthonormal basis for the whole
matrix valued signal space L2(R, CN*V).

Let G(w) satisfy

(2.12) Gw)H! (w) + Gw+mH!(w+7m) =0, Vw €R,
and
(2.13) G(w)G'(w) + G(w+ 7)GHw+7) = Iy, Yw €R.
Let

- w, s, W
(2.14) Y(w) = G(§)<I>(§).

The following result was proved in [1].

THEOREM 2.1. Let U(t) be the matriz valued function with its Fourier trans-
form defined in (2.14). Then, its translations U(t—k), k € Z, form an orthonormal
basis for Wo 2 Vi © Vo. Thus, ¥, (t) £ 29/2¥(2t - k), j,k € Z, form an or-
thonormal basis for the matriz valued signal space L*(R,CN*™).

The matrix filters H(w) and G(w) in (2.11)-(2.13) are called matriz quadrature
mirror filters (MQMF). Given H(w), G(w) can be constructed by the following
method.

Let H(w) = (Hw),H(w + m))! and G(w) = (G(w),G(w + m))!. Then, the
orthogonality (2.11)-(2.13) is equivalent to the paraunitariness of the 2N x 2N ma-
trix (H(w), G(w)). Let H;(w) and G;(w) for j = 0,1 be the polyphase components
of H(w) and G(w), respectively: F(w) = Fo(2w) + e~ *F,(2w), where F is H or
G. Then, the above paraunitariness is equivalent to the paraunitariness of the
matrix (H(w), G(w)), where F(w) = (Fo(w), F1(w))! for F = H or G. Thus, the
construction of G(w) in (2.11)-(2.13) is equivalent to the completion of a 2N x 2N
paraunitary matrix given its first N orthogonal columns I:I(w). This completion
can be obtained by employing the state-space description, see for example [20])-{22],

P
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where only the orthogonal completion of a constant orthogonal matrix is needed
for the corresponding constant realization matrix.

In the next section, we want to construct orthonormal matrix valued scaling
functions ®(¢) from the orthogonal filter H(w) in (2.11).

3. Construction of Matrix Valued Wavelets

It is known that the conventional scaling functions or MRA can be constructed
from QMF H(w) and necessary and sufficient conditions have been obtained, [18]-
[19]. For matrix valued wavelets, we present the following results. We first present
a lemma. In what follows, we are only interested in FIR MQMF H(w), ie., H(w)
is a polynomial matrix of e~%,

LEMMA 3.1. Let H(w) satisfy (2.9) and (2.11). If there exist a constant C > 0
and an integer Ko such that for any w € (=2Kn,2K7) and any K > K,,

K 00
(3.) ITTHEG)I < I TTHED I,
=1 i=1

then, the solution ®(t) in the matriz dilation equation (2.5) is a matriz valued
scaling function for an MMRA.

Proof. The assumption of the FIR property on H(w) leads to the finiteness
of the right hand side of (3.1). To prove Lemma 3.1 we only need to prove the
orthonormality of ®(t — k), k € Z. The rest is similar to the conventional MRA
theory, see for example [19].

For an integer K > 0, let

K
w
bi (W) = HH(Q)X[—:»Kw,an} (w).
=1

Then,
[ ol wrea
2K x w w
= ZY)... i fi tr¥y, —inw
/_QK,H(Z) Hige W (5) - HI(G)e ™ dw
2K+lﬂ, w w w
= =l H Sy g Yy e—inw
[ EG HGE ) B (e
2%m K1 w w w w w
- / H(g) [HiGr ! () + By + mB! (5% + )]
=1
K- t _
(i) e
=1
by (2.11 —ine 2m ino
y= ) /};“K—l(w)/‘}(..l(w)e did:"‘-:/ € deN=27r5(n)IN.
0

It is clear that pg(w) converges to ®(w) pointwisely in (2.8) since H(0) = Iy and
H(w) is a polynomial matrix of e~*. By (3.1),

llek @)k (W) — S(W)dt W) lImr < (C + 1)|8(w)d(w)[ly, Yw € R.

Do B Al NN S
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By the dominated convergence theorem, we have || #K#}( — 33t 5 0as K — oo
Therefore,

e ' / B(t)8° (¢t —n)dt = — / B(w)t (w)e ™ dw R—
2 R . .

— l : 1 —inw g
= 5- Jim R/m(w)ux(w)e dw = §(n)IN.

This proves the orthonormality of ®(t — k), kcZ. &
. ' We next want to present a sufficient condition on H(w) so that (3.1) is satisfied.

LEMMA 3.2. Let H(w) be a polynomial matriz of e and H(0) = In. Then,
there exist an integer Ko and a constant C > 0 such that

K 00
ITTEC) I < CHTTHG) I
=1 =1

for w € (—m,m) and K > Ko.

Proof. Since H(w) is a polynomial matrix of e~ and &(0) = Iy, we have
- e w
b(w) = [T H(zp),
k=1

and
lim ||®(w) — Inlim = 0.
w—0
Thus, there exists an integer Ko > 0 such that, for k > Ko and |w| < /2,
A W
ll‘p(éx) —Inllm <e

and

o

o -1
187 (5p)lar < -1— ie., | ( I1 H<§>) llar <

I=k+1

where ¢ is a small positive constant.
Therefore, for K > Ko and |w| < 7/2,

K oo o0 -1 =)
w w w w
ITTEG)IM = ||IIH(§,-)< II H(g)) e < CIHTTHG)n,
=1 . =1 I=K+1 1=1

where C =1/c. &
LEMMA 3.3. Let H(w) be a polynomial matriz of e~ and H(0) = In. If
inf [Mw)| >0 P
|w|<rr/2| ()| -
for any eigenvalue function Mw) of the polynomial matriz H(w) of variable e v, b
then, there exists a constant C > 0 such that, for anyw € (—2K 7,25 1), L

K o
w w
ITTECI < CITTHGD
=1 =1
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Proof. For w € (=2%x,2¥7), if k > K, then w/2* € (-7/2,n/2). By the
proof of Lemma 3.2, for w € (—2Kr,2Kr),

o -1
u ( I1 H(%)) I < =

I=K+Ko+1
Let us consider the case of l € {K + 1,K +2,..., K + Ko}. Let § > 0 such that
inf),|<r/2 [Mw)| > 6 for all eigenvalue functions of the polynomial matrix H(w).
Then, (A(w)) ™! is an eigenvalue function of the function matrix (H(w))~! of variable
e~ for |w| < m/2. Thus, there exists positive constant Cy, which only depends on
8, such that, for |w| < 7/2,

I(H(w) " im < Cr-
Therefore, for any w € (=257, 2K7),

K w o0 w =) w -1 K+Kp W -1
ITTHG)IM ”HH(g)( I1 H(;)) (H H(;)) s
=1

=1 I=K+Ko+1 I=K+1

IA

o
w
CITTHG)IM,
=1
where C = ClK°/e. &
By combining ‘the above three lemmas, we have proved the following result.

THEOREM 3.4. Let H(w) be a polynomial matriz of e™* and satisfy (2.9) and

(2.11). If
inf |Aw)|>0
lwlgm/2
for any eigenvalue function A\(w) of the polynomial matriz H(w) of variable e™*,
then, the solution ®(t) in the matriz dilation equation (2.5) is a matriz valued scal-
ing function for an MMRA, and therefore ¥, «(t), j,k € Z, form an orthonormal
basis for the matriz valued signal space L?(R, CN*V),

Notice that the above sufficient condition is analogous of the one given by Mallat
(18]. With the above sufficient condition, it is not hard to construct nontrivial
families of orthonormal matrix valued wavelets. The following is an example.

It is not hard to show that, if H(w) = }(In+€e*E(2w)) and E(w) is paraunitary,
i.e., E(w)E!(w) = Iy, then G(w) = e *’Hf(w+ ) and H(w) form a pair of MQMF
satisfving (2.11)-(2.13). Such property for H(w) is called the sampling property in
(1. Let E(w) = U(w)diag(e~*1v,... ,e~*~«)Ut(w) for k; = 0 or 1, where U(w)
is an arbitrary paraunitary polynomial matrix and U(0) = Iy. Then, it is not
hard to see that the above H(w) and G(w) satisfy (2.11)-(2.13) and the sufficient
condition in Theorem 3.4.

4. Connection to Multiwavelets

Let (®(t))ix, (¥(t))ix and (V;)ix be the components at the lth column and kth
row of ®(t), ¥(t) and Vj, respectively, [,k = 1,2,..., N and j € Z. Then,

(Vidie € (Vie1)ie, and f(t) € (V)i <= f(2t) € (Vj11)uk,

and
Njez(V;)ik = {0}, and Ujez (V;)ix is dense in L*(R).

g T e
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Moreover, for any fix € (Vo)ik, there exist constants ax,,m,1,k such that

N
" (4.1) ) =33 akymik(@(t = k1))mk, t €R.
k1€Z m=1
And, for any f € L2(R), there exist constants a;, i,k such that
N
(4.2) =Y > a5k 0k (T, ()i, tER,
7.k €Z =1

where k is any integer with 1 < £ < N. This implies the following proposition.

THEOREM 4.1. Let ®(t) be a matriz valued scaling function of an MMRA {V,}
and U(t) be its an associated matriz valued wavelet function. Then, for any fized
k, 1 < k < N, the functions (®(t))ik, | = 1,2,..,N, form multiscaling functions
and (¥(t))i, I = 1,2,..., N, form multiwavelets. Moreover, for each pair (1, k), the
spaces (V;j)ik, j € Z, form a multiresolution analysis of multiplicity ry where Ty is
the mazimum number of linearly independent functions of (®(t))ik, 1 =1,2,...,N.

For more about multiresolution analysis of multiplicity r, see [2]-[3]. We next
want to study the orthonormality of the column multiscaling functions induced
from the orthonormality for matrix valued scaling functions, which is

: N
(4.3) ) / (@(t = 7))o (8" (¢ = 72)imdlt = 6(ry — 2)8(1 = ).
m=1

Or,
N
3 / (®(t = 72))im (B (£ — 72))melt

m=1,m#k
= 6(1 — m2)6(l — k).
Consider the multiscaling functions from the kth column (®(¢))w(t), 1 <1 <
N, of ®(t). The conventional orthogonality studied in the current literature for
multiwavelets is

(45) /(‘I’(t - Tl))hk(q)*(t - Tg))lzkdt = 6(T1 - 7'2)6(11 - lg)

We call the orthogonality (4.5) Orthogonality A, and the orthogonality (4.4) Or-
thogonality B, for multiscaling functions (®(t))ik(t), 1 <1 < N. One can see that
the second term in the left hand side of (4.4), Orthogonality B, is the flexibility
term over (4.5), Orthogonality A.

(4.4) /(‘I’(t - Tl))lk(q)*(t - Tg))kkdt +

LEMMA 4.2. The conventional Orthogonality A for all column vectors of a ma-
trir valued scaling function implies Orthogonality B induced from the orthogonality
for matriz valued scaling functions.

Proof. To prove (4.4), we only need to prove (4.3), which is
N N
3 / (@(t=71))m(@* (t=2)kmdt ‘=) 3 6(ry ~12)8(1— k) = N&(1 ~72)6(1—k).
m=] m=1
&

Comparing Orthogonality A in (4.5) and Orthogonality B in (4.4) or (4.3), one
can see that the former requires the orthogonality for each individual component

A . ey e St i




ook, WA A TR A 4T

ORTHONORMAL MATRIX VALUED WAVELETS 167

in a vector while the later only needs the orthogonality for the vector itself. This
implies that Orthogonality B is weaker than Orthogonality A. On the other hand,
these two orthogonalities imply the same orthogonality (2.11) for the discrete matrix
filterbank H(w).

We now consider a subspace of L2(R, CVN*N):

L2(R, CN) = {f = (fk,l(t))NxN € Lz(R, CNXN) : fk,z(t) =0for2<Ii< N},

which 'is isomorphic to the N x 1 vector valued signal space. We may define its
corresponding MAR, scaling functions, wavelet functions similarly. In this case,
®(t) = ((®(t))rt)nxn with (®(t)) = 0 for 2 < I < N. Clearly, Orthogonality
A and Orthogonality B are equivalent in this case. In other words, Orthogonality
A only corresponds to Orthogonality B in a proper subspace of the matrix valued
signal space.

With Orthogonality A, necessary and sufficient conditions on H(w) that leads
to orthogonal multiwavelets have been obtained, see for example [15]. Since the
stronger Orthogonality A is used, the necessary and sufficient condition on H(w) is
not easy to check or use. However, with the weaker Orthogonality B, the condition
on H(w) in Theorem 3.4 is much easier to check so that one is able to use it to
construct families of nontrivial orthogonal(B) multiwavelets as studied in Section
3. The basic idea doing this is to embed an N x 1 vector into an N x N matrix
and then use the matrix orthogonality. Another way to interpret this idea is that
we lift a one dimensional vector into a two dimensional matrix with additional
freedoms to play with, which makes the construction easier. One now might want
to ask whether this new Orthogonality B is physically meaningful. The answer is
yes because it provides a complete decorrelation for matrix valued 51gnals as we
shall study in the next section.

5. Matrix Karhunen Loéve Expansion

In this section, we show that Orthogonality B provides a complete decorrelation
for matrix valued random processes.

5.1. Matrix KL Expansion: Definition. Let X(t), ¢ € [a,b] with —o0 <
a < b < 0o, be a matrix valued random process with finite second moments, i.e.,

E(XT(t)X(t)) € CVN*N,
and each path X(t) € L%(R; CV*N). Let

(5.1) R(s,t) £ E(X'(s)X(t)), s,t€ [a,b].
If there exist ®,(t) € L?(a,b;CV*N), A, € CN*N n =1,2, ..., such that .
b
(5.2) / ©,.(s)R(s,t)ds = An®n(t), n=1,2,..., t € [a,b)],
(5.3) (rn,®m) =6(m —n)Iy, mn=1,2,..,
and
oo
(5.4) X(t) =) (X, 2.)®,(t), t € [a,b],
n=1
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then, the expansion of X(t) in (5.4) is called the matriz Karhunen-Loéve expansion
of X(t). If the matrix Karhunen-Loéve (MKL) expansion of X(t) exists, then X(t)

-is decorrelated into a matrix valued random sequence Yn = (®n,X) as

(5.5) E(Y,Y})=6n-m)A,, mn=12..
The random sequence Y,, n = 0,1,2,..., is called the matrix Karhunen-Loéve
transform of X(t).

Notice that when N = 1, the above MKL expansions /transforms are reduced to
the conventional KL expansions/transforms. The object of this section is to study
the MKL expansion of X(t).

Two special cases were studied in [23]-[24]. In one, the constant matrix A, in
(5.2) was replaced by a scalar value and in the other, ®,(t) in (5.2) was replaced by
a scalar-valued function. As mentioned in §3.7 in [24], only a few cases satisfy these
assumptions, and therefore they are not complete. The main reason for not using
the product of two matrices at the right hand side in (5.2) is due to the difficulty
of handling the noncommutativity of matrix products.

5.2. The Generalized Hilbert-Schmidt and Mercer’s Theorems. With-
out loss of generality, in what follows we assume @ = 0 and b=T > 0. Let K(s,1),
s,t € [0,T], be a matrix valued function of two variables in L2(0,T;CN*V). In
other words, for each s € [0,T), K(s,-) € L?(0,T; CN*N), and for each t € [0, T,
K(-,t) € L*(0,T; CN*N) and

T T
(5.6) /0 /0 K (s, £)[2dsdt < oo.

If K(s,t) satisfies the above conditions, then K(s, t) is called a matrix Fredholm
integral operator. It is clear that a matrix Fredholm integral operator K(s,t) maps
L2(0,T; CN*V) into itself:

T
(Kf)(t) £ /0 £(s)K(s, t)ds € L2(0,T; CV*M).

Let &(t) € L?(0,T;CN*VN) with (®,®) = Iy, and A € CN*N_If the following
identity holds:

T
(5.7) /0 ®(s)K(s, t)ds = A®(t), t € [0,T],

then, ®(t) and A are called eigen-matriz-functions and eigen-matriz-values of the
operator K(s, t), respectively. ‘

Notice that the property (®,®) = Iy is required in the above definitions of
eigen-matrix-functions and eigen-matrix-values, which is different from the scalar-
valued case. In the scalar-valued case, if ¢(t) is an eigenfunction associated with an
eigenvalue ) for a scalar Fredholm integral operator, then a¢(t) for any constant
a # 0 is also an eigenfunction associated with X. It is not known, however, whether
the following statement is true: If ®(t) is an eigen-matrix-function associated with
an eigen-matrix-value A for a matrix Fredholm integral operator K (s, t), then A®(t)
or &(t)A for an N x N matrix A € CV*"V isalso an eigen-matrix-function associated
with A for the operator K(s,t). The difficulty is due to the noncommutativity of

matrix multiplications.

0 0 e s o SIS 3
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A matrix Fredholm integral operator K(s,t) is called Hermitian if K(s,t) = {
Ki(t,s) for s,t € [0,T)]. If K(s,t) is Hermitian and A is its eigen-matrix-value, then ;
A = Al ie., A is also Hermitian. This is because

(®,K®) = A = ((&,K®)) = Al

IOV 0 B S o S
e e+ St cat € Vit !

We associate each matrix Fredholm integral operator K(s,t) on [0,T] x [0, T
with the following scalar Fredholm integral operator K (s,t) on [0, NT] x [0, NT]:

(5.8) K(s,t) & K i(s — (k= 1)T,t — (I - 1)T),

if (s,t) € ((k — 1)T,kT) x ((I - 1)T,IT), k,l = 1,2,...,N, where K (s,t) is the
component function of K(s,t) at the kth row and the Ith column. The property
(5.6) implies the following properties for K (s, t):

NT NT
(5.9) / / |K (s,t)|%dtds < oo,
0 0

and if K(s,t) is Hermitian then K(s,t) is also Hermitian, i.e., K(s,t) = K*(t,s),
where * means the complex conjugate.
We now have the following generalized Hilbert-Schmidt theorem.

THEOREM 5.1. Let K(s,t), s,t € [0,7T], be a Hermitian matriz Fredholm in- :
tegral operator and K(s;t), s,t € [0, NT], be its associated scalar Fredholm inte- : oo vt e
gral operator. Let A1, Az, ..., all be eigenvalues (including multiples) of K(s,t) with ’

A1l 2 |A2}l = ---. Then, an N x N matriz A is an eigen-matriz-value of the
operator K(s,t) if and only if
(5.10) A =Udiag\n,, -, Any)UT,

where U is a certain N X N unitary matriz, and n,,...,ny are positive integers with
n; < ng <--- < ny. Moreover, if the operator K(s,t) doesn’t have zero eigenvalue,
e, [A| >0, n = 1,2,..., then, the eigen-matriz-functions ®,(t) corresponding

to the eigen-matriz-values A, 2 diag(A(n-1)N+1," ", Ann), . = 1,2,..., form an
orthonormal basis for the matriz valued signal space L*(0,T; CN*N).

Proof: From the definition of an eigen-matrix-value in (5.7), UTAU is an eigen-
matrix-value of K(s,t) if A is an eigen-matrix-value of K(s,t) and U is an N x N
unitary matrix. Thus, to prove A in (5.10) is an eigen-matrix-value of K(s,t),
we only need to prove the diagonal matrix diag(An,, -, An,) is an eigen-matrix-
value of K(s,t). In fact, without loss of generality, we only need to prove A, is an
eigen-matrix-value of K(s,t) for any integer n > 1. P

Let ¢,(t), t € [0, NT}, be the eigenfunctions of K(s,t) corresponding to A,
n=12..1ie, ¢(t), n=1,2, .., form an orthonormal set of L2(0, NT; C), and

NT

(5.11) dn(s)K(s,t)ds = Anon(t), t € [0,NT].
0

Then, equation (5.11) can be rewritten as

T N-1
(5.12) / Z On(s+ kT)K (s + kT, t)ds = Andn(t), t € [0, NT]. ;
L— :
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Let ¢r.n(s) 2 én(s + kT), s€[0,T), k=0,1,..,N — 1. Then,

T N-1

e e (5.13) 3" Gkn(s)K (s + KT, t)ds = Andin(t — IT), e
0 k=0 o
fort € (IT,(1+1)T],1=0,1,..., N — 1. Let
®0,(n—1)N+1(8) do,n-yn42(8) - donn(s)
. , (5.14) @n(s) 2 1, (n-1)N+1(5) b1,(n—1)N+2(5) $1,aN(8)
: ON-1,(n-1)N+1(S) ON-1(n-1)N+2(8) “+° BN-1nN(s)

By (5.8), (5.13) can be rewritten as
T
(5.15) / ®,(s)K(s, t)dt = A, ®,(t), n=1,2,..., t€[0,T].
0

By the orthonormality of ¢n(s), t € [0, NT], it is not hard to see that
(5.16) (B, ®n) = 6(m —n)IN, myn=12,...

Therefore, we have proved that A,, n = 1,2,..., are eigen-matrix-values of the
operator K(s,t).
Conversely, let A be an eigen-matrix-value of the operator K(s,t). By the ,
SR previous discussion we know that A is Hermitian. Thus, there exists a unitary . e e e
matrix U such that A = Udiag(a,--- ,an)UT with |a;| > -+ > |an]. By definition
(5.7) of an eigen-matrix-value, diag(a,,---,ay) is also an eigen-matrix-value of
K(s,t), i.e., there is ®(t) € L2(0,T; C¥*N) with (®, ®) = Iy such that

T
(5.17) /0 ®(s)K(s,t)ds = diag(a, -+ ,an)®(t), t €[0,T].

Assume @, »(s) is the mth row and the nth column component function of ®(s).
Let ¢,(s) = ¢man(s — (m —1)T) if s € ((m — 1)T,mT] for m,n = 1,2,...,N. By
(5.8) and (5.17), the function ¢, (s) is an eigenfunction of the operator K(s,t) with
its corresponding eigenvalue a,, n = 1,2,...,N. Thus, ax = A,, for some k with
ny < np < --- < ny. This proves (5.10).

When K(s,t) has no zero eigenvalue, by the scalar Hilbert-Schmidt Theorem
(see [25]), the eigenfunctions ¢n(t), n = 1,2,..., form an orthonormal basis for
L2(0, NT; CN*N). Therefore, any f(t) € L2(0, NT; C) can be represented as

(5.18) F(£) = (frdn)@a(t), t€[0,NT).

n=1 A
Lt

Similarly, (5.18) can be rewritten as
x T

f(t) = Z /(; f(s)(¢0,n(s)1 T, ¢N-l.n(s))fds(¢0,n(t), ] ¢N—1,n(t))1 te [OaT]L
n=l

for any N x 1 vector-valued f € L?(0,T; C"). By regrouping the above summation,
we have

. oo T
(5.19) f(t) = Z / f(s)®! (s)®,(t)ds, t € [0,T), f € L*(0,T;C").
n=1 0
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Extending f(t) € L?(0,T; CN) to f(t) € L2(0, T; CV*¥N), we have

6200 £ =3 (E8IE0), L[0T, £(t) € L2(0,T; CV<My,

n=1
This proves that the sequence ®,(¢), n = 1,2, ..., forms an orthonormal basis for
L2(0,T;CN*N). &

From the above proof, the eigen-matrix-function ®,,(¢) in Theorem 5.1 associ-
ated with the eigen-matrix-value A, in Theorem 5.1 is formulated by (5.14), for
n = 1,2,... We next want to generalize Mercer’s Theorem. A matrix Fredholm
mtegral operator K(s,t) is called positive if the N x N matrix (f,Kf) for any
£(t) € L?(0,T; CV* M) is nonnegative definite, i.e., x!(f, Kf)x > 0 for any x € CV

LEMMA 5.2. A matriz Fredholm integral operator K(s, t) is positive if and only
if its associated scalar Fredholm integral operator K (s,t) is positive.

Proof: Writing (f, K f) up, similar to the proof of Theorem 5.1, we have

T T
(5.21) /ONT ONTf‘(s)K*(s,t)f(t)dsdt=/0 /0 £(t)K (s, t)f (s)dtds,

where f(t) € L2(0,T; C"). On the other hand,

x! /OT/OTf(t)kf(s,t)ff(s)dtdsx:/OT/OT(xtf(t))K’r(s’t)(xff(s))Tdtds,

where x € CV and f(t) e L2(0, T;CNXN). Since
L*(0,T;CN) = {f(t)x: x € CV, f € L*(0,T;CN* )},

the values in (5.21) are nonnegative for all f(t) € L2(0,T; C") is equivalent to that
the values in (5.22) are nonnegative for all x € C" and all f(t) € L?(0,T; CV*V).
This proves Lemma 5.2. &

we have the following generalized form of Mercer’s Theorem.

THEOREM 5.3. Let K(s,t) be a Hermitian matriz Fredholm integral operator.
If K(s,t) is positive and its associated scalar Fredholm integral operator K (s,t) is
continuous in [0, NT] x [0, NT|, then

(5.23) K(s,t) = Y &1 (s)An®a(t), s,t€[0,7T),
n=1
where &,,(t) and A, are the same as in Theorem 5.1 and the convergence of the

nfinite summation is uniform.

Proof: By Lemma 5.2, the operator K(s,t) is also positive. By Mercer’s
theorem for the operator K(s,t) (see [25]),

st)—Z¢>

where ¢,, A, are eigenfunctions and eigenvalues of K (s,t) and the convergence is
uniform. Regrouping the above summation and using the same technique in the
proof of Theorem 5.1, (5.23) can be proved. &

(8)6n(t)An, s,t € [0, NT),

SR — e e Y I
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5.3. Matrix KL Expansions for Continuous-Time Matrix Valued Sig-

nals. We now come back to the MKL expansions for continuous-time matrix valued
- signals.

Let R(s,t) be the correlation matrix function defined by (5.1) of a matrix val-
ued random process X(t) with @ = 0 and b = T'. Assume R(s,?) € L2(0,T; CN*N).
Then R(s, t) is a Hermitian matrix Fredholm integral operator on L2(0,T; CN*N);
moreover R(s,t) is positive. Therefore, we can apply the generalized Hilbert-
Schmidt Theorem and the generalized Mercer’s Theorem.

Let R(s,t) be the associated scalar Fredholm integral operator of the operator
R(s,t), that is defined by (5.8). Let ¢n(t), An, n =1,2,.., all be eigenfunctions
and eigenvalues (including multiples) of the operator R(s,t) with

I, S e o BN

NT
(5.24) bn(s)R(s,t)ds = Andn(t), t € [O,NT], n=1,2,..,
0
and
NT
(5.25) Om(t)pn(t)dt = §(m —n), m,n=1,2,...,

0
where |A;| > |A2| > ---. Since the operator R(s, t) is positive, by Lemma 5.2, the
operator R(s,t) is also positive. Thus, \; > A2 >---20.
Let
(526) : A’n é diag(A(ﬂ—l)N-}-lv Y A'nN)v n= 1) 2’ ey : e
and, for t € [0,T], n = 1,2,..., and ®,(t) defined by (5.14). Then, by Theorem C i
5.1, its proof and (5.25), ®,(t) is an eigen-matrix-function of the operator R(s,t)

corresponding to the eigen-matrix value A, in (5.26) for n = 1,2, .... This gives the
following first condition on signals so that their MKL expansions ‘exist.

THEOREM 5.4. Let X(t), t € [0,T], be a random process with its correlation
matriz function R(s,t) € L2(0,T;CN*N). If A\ > 0, n = 1,2,..., then, for each
path of X(t),

(5.27) X(t) = i(X, 3,)®.(t), te0,T],

n=1

i.e., the MKL expansion of X(t) exists in the sense (5.2)-(5.4).
The second condition is given by the following theorem.

THEOREM 5.5. Let X(t), t € [0,T), be a random process with its correlation
matriz function R(s,t) € L2(0,T; CN*N). If its associated scalar Fredholm integral
operator R(s,t) is continuous in [0, NT)x [0, NT|, then the MKL expansion of X(t)
erists:

(5.28) X(t) = i(x’ ®,)®n(2), t€ [O,T],
n=1 i L N

where the convergence is in the mean square sense. i

The proofs of the above two theorems are straightforward by using the results
in Section 5.2.

From Theorems 5.4-5.5, it seems that the MKL expansions of X(t) depend on
the definition of the associated scalar Fredholm integral operator R(s,t) of R(s, t).
One might ask, when the existence of the MKL expansion of X(¢) in the sense
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of (5.2)-(5.4) is assumed, whether the MKL expansion of X(t) changes if the way
to define R(s,t) in (5.8) changes. The answer is NO. In other words, the MKL
expansions (5.27) and (5.28) in Theorems 5.4-5.5 are necessary.

THEOREM 5.6. Let X(t), t € [0,T], be a random process with its correlation
matriz function R(s,t) € L?(0,T; CN*V). If the MKL expansion of X(t) ezists in
the sense of (5.2)-(5.4), then the MKL ezpansion of X(t) can always be written as

o0

(5.29) X(t) =) (X, 2n)@n(t), t€[0,T],

where ®,(t), n = 1,2..., are defined in (5.14).

Proof: By (5.2)-(5.4), there exist ®_(t) € L?(0,T; CN*N) and A, € CNxN,
n =1,2,..., such that

T
/ 8. (s)R(s,t)ds = A.B.(8), n=1,2,..., t € [0, ],
0

(@;,Q:n) =é(n-m)Iy, myn=1,2,..,

and

(5.30) X(t) = i(x, ®,)®.(t), te[0,T)
" n=1

Thus, d)’n (t) is an eigen-matrix-function of the operator R(s, t) corresponding to the
eigen-matrix-value A;l forn=1,2,.... By Theorem 5.1, there exist unitary matrices
U, such that A, = U,‘:A;U,, for n = 1,2, ..., where the order of the eigenvalues A,
is rearranged if necessary. Moreover, A, is an eigen-matrix-value of R(s,t) with its
eigen-matrix-function U,,<I>;1 (t),n=1,2,.... Then, similar to the proof of Theorem
5.1, one can show that ®,(t) = U,®, (t), n = 1,2,... . By (5.30),

X(t) = i(xftficbn)tf,t@n(t) = f}(x, ®,) o (2).
n=1 n=1

This proves (5.29). &

From Thoerems 5.1-5.6, one can clearly see that a matrix valued random process
X(t) is completely decorrelated in the both time and the spatial domains using
Orthogonality B.

6. Conclusion

In this paper, we studied orthonormal matrix valued multiresolution analysis
and wavelets. A simple sufficient condition on the matrix filter H(w) that leads
to orthonormal matrix valued wavelets is presented, which is analogous to the
one given by Mallat in [18] for scalar valued wavelets. This sufficient condition
enables us to construct families of nontrivial orthonormal matrix valued wavelets.
With orthonormal matrix valued wavelets, one is able to construct multiwavelets
with a different orthonormality (called Orthogonality B in this paper) from the
one people currently use (called Orthogonality A in this paper). It was shown
that Orthogonality B is weaker than Orthogonality A. We believe that this weaker
orthogonality makes the sufficient condition simple. The main idea behind it is that
one dimensional vectors are lifted to two dimensional matrices, and therefore more
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freedoms are avaliable. It was also shown that Orthogonality B provides a complete
Karhunen-Loéve expansion, i.e., a complete decorrelation, for matrix valued signals.

e Gt I ST WML
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Abstract: In this paper, we introduce a new multiresolution water-
marking method for digital images. The method is based on the dis-
crete wavelet transform (DWT). Pseudo-random codes are added to the
large coefficients at the high and middle frequency bands of the DWT
of an image. It is shown that this method is more robust to proposed
methods to some common image distortions, such as the wavelet trans-
form based image compression, image rescaling/stretching and image
halftoning. Moreover, the method is hierarchical.
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1. Inti'oduction

With the rapid development of the current information technology, electronic publishing,
such as the distribution of digitized images/videos, is becoming more and more popular.
An important issue for electronic publishing is copyright protection. Watermarking is
one of the current copyright protection methods that have recently received considerable
attention. See, for example, (1-8, 18]. Basically, “invisible” watermarking for digital
images consists of signing an image with a signature or copyright message such that
the message is secretly embedded in the image and there is negligible visible difference
between the original and the signed images.

There are two common methods of watermarking: the frequency domain and
the spatial domain watermarks, for example [1-8, 18]. In this paper, we focus on fre-
quency domain watermarks. Recent frequency domain watermarking methods are based
on the discrete cosine transform (DCT), where pseudo-random sequences, such as M-
sequences, are added to the DCT coefficients at the middle frequencies as signatures
[2-3]. This approach, of course, matches the current image/video compression standards
well, such as JPEG, MPEGI1-2, etc. It is likely that the wavelet image/video coding,
such as embedded zero-tree wavelet (EZW) coding, will be included in the up-coming
image/video compression standards, such as JPEG2000 and MPEG4. Therefore, it is
important to study watermarking methods in the wavelet transform domain.

In this paper, we propose a wavelet transform based watermarking method by
adding pseudo-random codes to the large coefficients at the high and middle frequency
bands of the discrete wavelet transform of an image. The basic idea is the same as the
spread spectrum watermarking idea proposed by Cox et. al. in [2). There are, however,
three advantages to the approach in the wavelet transform domain. The first advantage
is that the watermarking method has multiresolution characteristics and is hierarchical.
In the case when the received image is not distorted significantly, the cross correlations
with the whole size of the image may not be necessary, and therefore much of the
computational load can be saved. The second advantage lies in the following argument.
It is usually true that the human eyes are not sensitive to the small changes in edges and
textures of an image but are very sensitive to the small changes in the smooth parts of
an image. With the DWT, the edges and textures are usually well confined to the high
frequency subands, such as HH, LH, HL etc. Large coefficients in these bands usually
indicate edges in an image. Therefore, adding watermarks to these large coefficients
is difficult for the human eyes to perceive. The third advantage is that this approach
matches the emerging image/video compression standards. Our numerical results show
that the watermarking method we propose is very robust to wavelet transform based
image compressions, such as the embedded zero-tree wavelet (EZW) image compression
scheme, and as well as to other common image distortions, such as additive noise,
rescaling/stretching, and halftoning. The intuitive reason for the advantage of the DWT
approach over the DCT approach in rescaling is as follows. The DCT coefficients for the
rescaled image are shifted in two directions from the ones for the original image, which
degrades the correlation detection for the watermark. Since the DWT are localized
not only in the time but also in the frequency domain [9-15}, the degradation for the
correlation detection in the DWT domain is not as serious as the one in the DCT
domain.

Another difference in this paper with the approach proposed by Cox et. al. in
(2] is the watermark detection using the correlation measure. The watermark detection
method in [2] is to take the inner product (the correlation at the 7 = 0 offset) of the
watermark and the difference in the DCT domain of the watermarked image and the
original image. Even though both the difference and the watermark are normalized, the
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inner product may be small if the difference significantly differs from the watermark
although there may be a watermark in the image. In this case, it may fail to detect
the watermark. In this paper, we propose to take the correlation at all offsets 7 of
the watermark and the difference in the DWT domain the watermarked image and
the original image in different resolutions. The advantage of this new approach is that,
although the peak correlation value may not be large, it is much larger than all other
correlation values at other offsets if there is a watermark in the image. This ensures
the detection of the watermark even though there is a significant distortion in the
watermarked image. The correlation detection method in this paper is a relative measure
rather than an absolute measure as in [2].

This paper is organized as follows. In Section 2, we briefly review some basics
on discrete wavelet transforms (DWT). In Section 3, we propose our new watermarking
method based on the DWT. In Section 4, we implement some numerical experiments in
terms of several different image distortions, such as, additive noise, rescaling/stretching,
image compression with EZW coding and halftoning.

2. Discrete Wavelet Transform (DWT): A Brief Review

The wavelet transform has been extensively studied in the last decade, see for example [9-
16]. Many applications, such as compression, detection, and communications, of wavelet
transforms have been found. There are many excellent tutorial books and papers on
these topics. Here, we introduce the necessary concepts of the DWT for the purposes of
this paper. For more details, see [9-15].

The basic idea in the DWT for a one dimensional signal is the following. A
signal is split into two parts, usually high frequencies and low frequencies. The edge
components of the signal are largely confined to the high frequency part. The low fre-
quency part is split again into two parts of high and low frequencies. This process is
continued an arbitrary number of times, which is usually determined by the application
at hand. Furthermore, from these DWT coefficients, the original signal can be recon-
structed. This reconstruction process is called the inverse DWT (IDWT). The DWT
and IDWT can be mathematically stated as follows.

Let

H(w) =Y he?*, and G(w) =) gre 7.
k k

be a lowpass and a highpass filter, respectively, which satisfy a certain condition for
reconstruction to be stated later. A signal, z[n] can be decomposed recursively as

Cji-1,k = Zhn—Zij,n (1)
n

dji-1x = Zgn—2kcj.n (2)
n .

for j = J+1,J,...,Jo where cj4+1.x = z|k], k € Z, J+1 is the high resolution level index,
and Jp is the low resolution level index. The coefficients ¢, &, djo ks dJo+1,ks -y dJ k- ATE
called the DWT of signal z[n}, where ¢, x is the lowest resolution part of z[n} and d; x
are the details of z[n] at various bands of frequencies. Furthermore, the signal z[n] can
be reconstructed from its DWT coefficients recursively

n=3 hn_2kCi1k+ Y gn-2kdj_1k. : (3)
k k
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Figure 2.  DWT for two dimensional images.

The above reconstruction is called the IDWT of z[n]. To ensure the above
IDWT and DWT relationship, the following orthogonality condition on the filters H(w)
and G(w) is needed:
|H@)* +I1GWw)* = 1.

An example of such H(w) and G(w) is given by

Hw)= -;— + -;-e"j“', and G(w) = = — -;—e“j“’,

B =
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which are known as the Haar wavelet filters.

The above DWT and IDWT for a one dimensional signal z|n] can be also de-
scribed in the form of two channel tree-structured filterbanks as shown in Fig. 1. The
DWT and IDWT for two dimensional images z[m, n] can be similarly defined by imple-
menting the one dimensional DWT and IDWT for each dimension m and n separately:
DWT,[DWTp[z[m,n]]], which is shown in Fig. 2. An image can be decomposed into
a pyramid structure, shown in Fig. 3, with various band information: such as low-low
frequency band, low-high frequency band, high-high frequency band etc. An example
of such decomposition with two levels is shown in Fig. 4, where the edges appear in all
bands except in the lowest frequency band, i.e., the corner part at the left and top.

LLy| HL,

HL,
LH3| HH, L
1

LH; HH,
LH, HH,

Figure 3. DWT pyramid decomposition of an image.

DWT

30
DIY,

Figure 4. Example of a DWT pyramid decomposition.

Je

3. Watermarking in the DWT Domain

Watermarking in the DWT domain is composed of two parts: encoding and decoding.
In the encoding part, we first decompose an image into several bands with a pyramid
structure as shown in Figs. 3-4 and then add a pseudo-random sequence (Gaussian
noise) to the largest coefficients which are not located in the lowest resolution, i.e., the
corner at the left and top, as follows. Let y{m,n}] denote the DWT coefficients, which
are not located at the lowest frequency band, of an image z([n,m]. We add a Gaussian
noise sequence N|[m, n] with mean 0 and variance 1 to y[m, n]:

glm,n] = ylm,n] + ay®[m, n|N[m,n], (4)

where a is a parameter to control the level of the watermark, the square indicates the
amplification of the large DWT coeffcients. We do not change the DWT coefficients at
the lowest resolution. Then, we take the two dimensional IDWT of the modified DWT
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coefficients § and the unchanged DWT coefficients at the lowest resolution. Let Z[m,n]
denote the IDWT coefficients. For the resultant image to have the same dynamic range
as the original image, it is modified as

#{m,n] = min(max(z[m, n]), maz{Z[m,n}, min(z[m,n])}). 5)

The operation in (5) is to make the two dimensional data Z[m, n] be the same dynamic
range as the original image z[m,n|. The resultant image #[m,n] is the watermarked
image of z[m,n). The encoding part is illustrated in Fig. 5(a).

Insert

watermarks ’ Gal'xssz.an
noise
Qriginal Watermarked
image image
| D Inverse
QO

ow Ol e
' - XE}‘ ® T '
I

watermarks + Gaussian
noise

(a): Encoding

Wa termarkecf
image stop
DWT ' Yes
—— .
Is
D there
a peak?
No
pwT Original
» watermark

Original
image

Original
watermark

QI9NIYON D19 OO

Continue

(b) : Decoding
Figure 5. Watermarking in the DWT domain.

The decoding method we propose is hierarchical and described as follows. We
first decompose a received image and the original image (it is assumed that the original
image is known) with the DWT into four bands, i.e., low-low (LL,) band, low-high
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(LH,) band, high-low (HL;) band, and high-high (H H;) band, respectively. We then
compare the signature added in the HH; band and the difference of the DWT coeffi-
cients in HH; bands of the received and the original images by calculating their cross
correlations. If there is a peak in the cross correlations, the signature is called detected.
Otherwise, compare the signature added in the H H; and LH,; bands with the difference
of the DWT coefficients in the H H, and LH, bands, respectively. If there is a peak, the
signature is detected. Otherwise, we consider the signature added in the HL,, LH,, and
HH, bands. If there is still no peak in the cross correlations, we continue to decompose
the original and the received signals in the LL; band into four additional subbands L L,
LH,, HL, and HH; and so on until a peak appears in the cross correlations. Otherwise,
the signature can not be detected. The decoding method is illustrated in Fig. 5(b).

4. Numerical Examples

We implement two watermarking methods: one is using the DCT approach proposed
by Cox el. al. in [2] and the other is using the DWT approach proposed in this paper.
In the DWT approach, the Haar DWT is used. Two step DWT is implemented and
images are decomposed into 7 subbands. Watermarks, Gaussian noise, are added into
all 6 subbands but not in the lowest subband (the lowest frequency components). In
the DCT approach, watermarks (Gaussian noise) are added to all the DCT coefficients.
The levels of watermarks in the DWT and DCT approaches are the same, i.e., the total
energies of the watermark values in these two approaches are the same. It should be
‘noted that we have also implemented the DCT watermarking method when the pseudo-
random sequence is added to the DCT values at the same positions as the ones in the
above DWT approach, i.e., the middle frequencies. We found that the performance is
not as good as the one by adding watermarks in all the frequencies in the DCT domain.

Two images with size 512 x 512, “peppers” and “car,” are tested. Fig. 6(a)
shows the original “peppers” image. Fig. 6(b) shows the watermarked image with the
DWT approach and Fig. 7(a) shows the watermarked image with the DCT approach.
Both watermarked images are indistinguishable from the original. A similar property
holds for the second test image “car,” whose original image is shown in Fig. 8(b).

The first distortion against which we test our algorithm with is additive noise.
Two noisy images are shown in Fig. 7(b) and Fig. 8(a), respectively. When the variance
of the additive noise is not too large, such as the one shown in Fig. 7(b), the signature
can be detected only using the information in the HH, band with the DWT approach,
where the cross correlations are shown in Fig. 9{a) and a peak can be clearly seen.
When the variance of the additive noise is large, such as the one shown in Fig. 8(a),
the HH, band information is not good enough with the DWT approach, where the
cross correlations are shown in Fig. 9(b) and no clear peak can be seen. However, the
signature can be detected by using the information in the HH, and LH; bands with
the DWT approach, where the cross correlations are shown in Fig. 9(d) and a peak
can be clearly seen. For the second noisy image, we have also implemented the DCT
approach. In this case, the signature with the DCT approach can not be detected, where
the correlations are shown in Fig. 9(c) and no clear peak can be seen. Similar results
hold for the “car” image and the correlations are shown in Fig. 10.

The second “test” distortion is rescaling/stretching for “peppers” and “car”
images. three types of rescaling/stretchings are implemented. In the first two imple-
mentations, the rescaled/stretched images are rescaled back to the same size of the
original image using interpolations, where 25% reduction/enlargement is used. In the
third implementation, the stretched images are simply cut back to the original size,
where 1% and 2% stretching is used.

In the rescaling, an image, x, is reduced to 3/4 of the original size. The method of
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the rescaling is from the MATLAB function called “imresize.” as imresize(x, 1-1/4,
'method’) where 'method’ indicates one of the methods in the interpolations between
pixels: piecewise constant, bilinear spline, and cubic spline. With the received smaller
size image, for the watermark detection we extend it to the normal size, i.e., 512 x 512,
by using the same Matlab function “imresize” as imresize(y, 1+1/3, ’method’),
where 'method’ is also one of the above interpolation methods. In this experiment, we
implemented two different interpolation methods in imresize in the rescaling distor-
tion: the piecewise constant method and the cubic spline method. In the detection, we
alway use the cubic spline as imresize(y, 1+1/3, ’bicubic’). Similar results also
hold for other combinations of these interpolation methods. Fig. 11 illustrate the de-
tection results for the “peppers” image: Fig. 11(a),(c) show the cross correlations with
the DWT approach while Fig. 11(b),(d) show the cross correlations with the DCT ap-
proach. In Fig. 11(a), (b), the rescaling method is imresize(x,1-1/4, 'nearest’),i.e.,
the piecewise constant interpolation is used. In Fig. 11(c),(d), the rescaling method is
imresize(x,1-1/4,'bicubic?’),i.e., the cubic spline interpolation is used. One can see
the better performance of the DWT approach over the DCT approach. Similar results
hold for the “car” image and are shown in Fig. 12.

When, in the above rescaling experiment, the size of an image is first reduced
and then extended in the detection, in the stretching, an image is first extended and
then reduced in the detection. The same Matlab function imresize as in the rescaling
is used. In the stretching experiment, an image is extended by 1/4 of the original size,
i.e., the MATLAB function imresize(x, 1+1/4, ’method’), is used, where 'method’
is the same as in theé rescaling. In the detection, the received image is reduced by 1/5
to the original size, i.e., the Matlab function imresize(y, 1-1/5, ’method’) is used.
The rest is similar to the one in the rescaling. Figs. 13 and 14 show the correlation
properties for the “peppers” and the “car” images, respectively.

In the third implementation of rescaling/stretching, an image is first stretched
by 1% and 2% using the MATLAB function imresize(y, 1+1/100, ’method’) and
imresize(y, 1+2/100, ’method’), respectively. The stretched image is then cut back
to the original size. Two images “peppers” and “car” are tested. Figs. 15-16 shows the
correlation properties for the “peppers” and the “car” images, respectively, where (a)
and (b) are for the 1% stretching, and (c) and (d) are for the 2% stretching.

The third “test” distortion is image compression. Two watermarked images with
the DWT and DCT approaches shown in Fig. 6(b) and Fig. 7(a) are compressed by us-
ing the EZW coding algorithm. The compression ratio is chosen as 64, i.e., 0.125bpp.
With these two compressed images, the correlations are shown in Fig. 17 (a) and (b),
where a peak in the middle can be clearly seen in Fig. 17(a) with the DWT approach,
but no clear peaks can be seen in Fig. 17(b) with the DCT approach. This is not very
surprising because the compression scheme is not suitable for the DCT approach. It
should be noticed that the wavelet filters in the EZW compression are the commonly
used Daubechies “9/7” biorthogonal wavelet filters while the wavelet filters in the wa-
termarking are the simpliest Haar wavelet filters mentioned in Section 2.

The last “test” distortion is halftoning. The two watermarked images in Fig.
6(b) and Fig. 7(a) are both halftoned by using the following standard method. Let
r{m,n] be an image with 8 bit levels. To halftone it, we do the nonuniform thresholding
through the Bayer’s dither matrix T [17]:

11 7 10 6
3 15 2 14
T= (Tj,k)4x4 =16 9 5 12 8
1 13 4 16
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in the following way. Compare each disjoint 4 x 4 blocks in the image z[m,n]. If z[m *
4+ j,n x4+ k| > T, then it is quantized to 1, and otherwise it is quantized to 0.
Both DWT and DCT watermarking methods are tested. Surprisingly, we found that the
watermarking method based on DWT we proposed in this paper is more robust than
the method based on the DCT in [2-3]. The correlations are shown in Fig. 18(a) and
(b), where (a) corresponds to the DWT approach while (b) corresponds to the DCT
approach. One can clearly see a peak in the middle in Fig. 18(a) while no any clear peak
in the middle can be seen in Fig. 18(b). In this experiment, the watermark was added
to the middle frequencies in the DCT approach and no inverse halftoning was used.

5. Conclusion

In this paper, we have introduced a new multiresolution watermarking method using the
discrete wavelet transform (DWT). In this method, Gaussian random noise is added to
the large coefficients but not in the lowest subband in the DWT domain. The decoding is
hierarchical. If distortion of a watermarked image is not serious, only a few bands worth
of information are needed to detect the signature and therefore computational load can
be saved. We have also implemented numerical examples for several kinds of distortions,
such as additive noise, rescaling/stretching, compressed image with the wavelet approach
such as the EZW, and halftoning. It is found that the DWT based watermark approach
we proposed in this paper is robust to all the above distortions while the DCT approach
is not, in particular, to distortions, such as compression, rescaling/stretching (1%, 2%,
and 25% were tested), and additive noise with large noise variance.
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Figure 8.  (a) Watermarked image with high additive noise; (b) Original “car”
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Figure 10.  Correlations for watermark detection for the “car” image: (a) DWT
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noise; (d) DWT with HH, and LH; bands for high additive noise; (c¢) DCT for
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age: (a) and (b) piecewise constant interpolation in the rescaling and (a) DWT (b)
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(a) and (b) piecewise constant interpolation in the rescaling and (a) DWT (b) DCT;
(c) and (d) cubic spline interpolation in the rescaling and (c) DWT (d) DCT.

#7038 - $15.00 US
(C) OSA 1998

Received October 14, 1998; Revised November 25, 1998
7 December 1998 / Vol. 3, No. 12/ OPTICS EXPRESS 509




e

DWT correlation DCT correlation

0 2 4 6 8 1] 2 4 6
@ x10° ®) x 10"
DWT correlation DCT correlation
1
0.5
0
-05
-1
0 2 4 6 8 0 2 4 6 8
© x 10° @ x 10°

Figure 15.  Correlations for watermark detection for the stretched “peppers” im-
age: (a) and (b) 1% stretching and (a) DWT (b) DCT; (c) and (d) 2% stretching
and (c) DWT (d) DCT.
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Figure 16.  Correlations for watermark detection for the stretched “car” image:
(a) and (b) 1% stretching and (a) DWT (b) DCT; (c) and (d) 2% stretching and
(c) DWT (d) DCT.
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Doppler Ambiguity Resolution Using Optimal
Multiple Pulse Repetition Frequencies

Ferrari, Bérenguer, and Alengrin recently proposed an
algorithm for velocity ambiguity resolution in coherent pulsed
Doppler radar using multiple pulse repetition frequencies (PRFs).
In this algorithm, two step estimations (folded frequency and
ambiguity order) for the Doppler frequency is used by choosing
particular PRF values. The folded frequency is the fractional part
of the Doppler frequency and is estimated by averaging the folded
frequency estimates for each PRF. The ambiguity order is the
integer part of the Doppler frequency and is estimated by using
the quasi-maximum-likelihood criterion. The PRF are grouped
into pairs and each pair PRF values are symmetric about 1. The
folded frequency estimate for each pair is the circular mean of the
two folded frequency estimates of the pair due to the symmetry
property.

We propose a new algorithm based on the optimal choice
of the PRF values, where the PRF values are also grouped into
pairs. In each pair PRF values, one is given and the other is °
optimally chosen. The optimality is built upon the minimal
sidelobes of the maximum likelihood criterion. Numerical
simulations are presented to illustrate the improved performance.

I. INTRODUCTION

Multiple pulse repetition frequency (PRF) is
commonly used in modern-day radars for the velocity
ambiguity resolution in coherent pulsed Doppler
radars, see for example [1-4]. In this approach, the
conventional method for achieving the ambiguity
resolution is to search for the coincidence between
unfolded Doppler frequency estimates for each
PREF, see for example [2-4]. Since the Doppler
frequency may take all possible real values in a
range and infinite many trials are needed for all
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the possibilities of the Doppler frequency, it maybe
impossible to have an exact match. Thus, estimation
errors usually occur. Based on this observation, a
two step estimation algorithm has been proposed in
(1] by Ferrari, Berenguer, and Alengrin. The basic
idea for the two step estimation is the following.
The Doppler frequency is decomposed into two
parts: the folded part, i.e., the fractional part modulo
1, and the ambiguity order part, i.e., the integer
part. By grouping the PRFs into pairs where each
pair is symmetric about 1, the folded part is the
“circular mean” {5] of the folded estimates of the pair
PRFs. This circular averaging is the first step of the
algorithm in [1]. After the folded part is estimated,
the second step is to find the match of the ambiguity
order. By noticing that the ambiguity order takes
integer values, there are only finite many possible
trials needed ranging from the minimal and the
maximal possible ambiguity orders. Therefore, the
exact estimation of the Doppler frequency becomes
possible with the two step estimation. Note that the
kev of this method is to convert the infinite many trials
to the finite many trials, by converting a general real
number matching to an integer matching.

The motivation for this paper is as follows. Since
the specific PRF pairs, which are symmetric about
1, are needed in the Ferrari-Bérenguer~Alengrin
approach, it may reduce the detectability of using the
maximum likelihood criterion to detect the peak or
the match. It is because the sidelobes of the maximum
likelihood function with the specific PRFs may not
be as low as the one with other PRFs. The motivation
of this work is to relax the above PRF condition in
the following way: one of each pair PRFs is fixed and
the other of the pair is optimally determined based
on the lowest sidelobes of the maximum likelihood
function. With this relaxization, the “circular mean”
estimation of the folded frequency may not be as good
as the one in (1]. We propose an alternative approach
to achieve the folded frequency estimation as follows.
We first take the conventional mean of the folded
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Multiple PRF waveform.

frequency estimates in each pair. The true folded
frequency falls in a finite number of possibilities from
the conventional mean. These finite possibilities of
the folded frequency can be obtained when the PRF
pairs are known. Since the ambiguity order has also
finite possibilities, the overall folded frequency and
the ambiguity order have finite possibilities. This
suggests us to estimate both the folded frequency -
and the ambiguity order simultaneously based on
the maximum likelihood criterion. What is gained
here is the detectability improvement of the Doppler
frequency while the penalty is the increase of the
computational complexity with a multiple of the
one in [1] due to more possibilities to search for. the
folded frequency. .

This paper is organized as follows. In Section II,
we briefly review the Ferrari-Bérenguer—Alengrin
approach proposed in [1]. In Section III, we
study the optimal PRF method. In Section IV, we
present numerical examples which outperform the
Ferrari-Bérenguer-Alengrin method. .

ll. THE FERRARI-BERENGUER-ALENGRIN TWO
STEP ESTIMATION METHOD

First of all, we briefly describe the problem. Let
radar transmit 2N, bursts of n, pulses, where the PRF
of the kth burst is assumed Fr(k), 1 <k < 2N,. The
time difference between two pulses in the kth burst is
Tr(k) = 1/Fr(k). It is assumed that the elapsed time
between the last pulse of the kth burst and the first
one of the (k + 1)th burst is Tr(k). The time delays
Tr(k) are assumed as

1
Tr(k) = (1 + IV(k—)) Tr n

where N(1),N(2),...,N(2N,) are integers and Tr is
usually assumed as 1 for simplicity. The multiple PRF
waveform is shown in Fig. 1.

After coherent demodulation, the received data
at the nth sample, 0 < n < n, - 1, in the kth burst,
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| <k < 2N,. becomes
yi(n) = x,n) + by(n) = a () exp(j27 fnTr(k)) + b (1)
(2)

where fj, is the unknown Doppler frequency, b, (n)

is white noise. trom the contribution of both thermal
noise and clutter whitened residue, and a.(fp) contains
the initial phase of the target signal on the kth burst. It
a,(fp) = A, then we have

k-1
a.(fp) = Aexp (ijnijZTr(q)) , k>2.
9=l
(3)

Then the ambiguity resolution problem is to estimate
the Doppler frequency f, from the noisy data y,(n) in
(2). It is usually assumed that f}, is in a certain range,

e.. If1 <€ fna- The conventional detection method is
the following maximum likelihood estimation. Find
]D that maximizes the following maximum likelihood
function

ZN,n,-I

Z Z vi{m)ay(f)exp(— Jzﬂ'fmTr(k))'

"k=1 m=0

L(f) =

4)

uﬁ>=ﬁ31un

where g, (f) takes the form (3) with f, replaced by
f and ifyi < f.... This is a matching process and f
needs to run all real numbers from —f . to f ...
Clearly, it has infinite many trials and therefore is
impossible to have an exact match.

In [1]. Ferrari-Bérenguer-Alengrin proposed an
alternative two step approach for the above problem
without implementing infinite many trials, where
particular N(k) in (1) were used. We next want to
briefly describe this two step approach.

Let N(2p + 1) be a positive integer and set

NR2p+2)=-N(2p+1), for p=0,1,....N,- 1.

(5)

The Doppler frequency f,, is decomposed into its
integer part (the ambiguity order) n, and fractional
part (the folded or reduced frequency) f, as

fD = f; + nr
Then (2) becomes

with 0<f <. (6)

yi(n) = a,(fp)exp (127 (f + Nj;Dk)) n) + by (n),
0<n<n,-1. €))

CORRESPONDENCE

Let
fp

Y
L= S~ <k <
LEh+ 5o 1SkSaw, (8)

If f; could be obtained from y,(n), 0 < n<n, - 1,
in (7), by using N(2p+2)=-N(2p + 1) in (5), the
reduced frequency f, would be

_ fZ;ul +f2p+2

f= 2 0<p<N, =1 . (9

From y,(n) in (7) what we can get for f is, however,
its folded version f, i.e.,

! is an unknown integer and 0 < f-; <1.
(10)

f=f o+,

In this case, the reduced frequency f, cannot be
obtained from f, by simply taking their mean as
(f2p+1 * f1p+2)/2. However, when

|f2p+l _f2p+2| <05 (rn

the reduced frequency f, can be recovered from j-; by
taking the “circular mean™ [5] as

- 1 . -
fi(p) = 5-angle[exp(j27 f;,,1) + exp(j27 fy,,,,)]
(12)
where angle(z) is the phase angle in radians in [O_,.27r)

of the complex number z. With total N, pairs of f,, the
overall estimate of the reduced frequency f, is

N1
-

£=%meEWWMO»

p=0

(13)

When the Doppler frequency f in (4) is split into
its reduced frequency part f (without confusion in
understanding we also use f to denote the reduced
frequency) and its ambiguity order part n, the
maximum likelihood function in (4) can be written
as

ZN, n-1

L(f,n)= lZZyk(m)ak(f ,n)

k=1 m=0

2
-exp(—j2n(f + n)mTr(k))

‘ Z a,(f,n) Z yi(m)exp(—j2n fmTr(k))

2
(14)

-exp( jZTI’N(k) )
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where a,(f.n) corresponds to the term «,(f) in (4)
and can be expressed as

u:p‘l(f,n)=exp(’j2:rfn‘2p) (15)
. S I '
(ll!”z(f.ll-) = exp (j?.ﬁfn‘ (2[7 + 1+ m))
’ n
-ex i2an, ——— | .
exp (’“ "NZp+ 1)> (16)

After the reduced frequency f, is estimated as in (13),
the maximum likelihood function L(f,n) for both f
and n is reduced to the one for the ambiguity order n

only:
3 -
L(n)=L(f,,n)

v:N;, R II;'I R
= 5" a(f,m) Y ylm)exp(~j2r f,mTr(k))
k=] m=0
. n :
-exp ("’2“Wm>. (17)

where n' ranges all integers from —n_,, to n_, and
Noa 1S the maximum ambigui.ty order corresponding
to the maximum Doppler frequency f, ... Thus, the
searching of the Doppler frequency f, from all the
real numbers | fi < f,, to maximize L(f) in (4)
becomes the searching of the ambiguity order n
from all integers inj < n_,, to maximize L(n) in (17).
Note that there are only finite many possibilities of
n, which makes the exact coincidence of the true
ambiguity order possible. Let a, denote the optimal
ambiguity order estimate from L(n) in (17). Then the
final Doppler frequency estimate is

fo=f +h,. (18)

The reason for choosing N(k) as integers in the

whole approach is to use the discrete Fourier
transform (DFT) calculations in (17) for the maximum
likelihood function evaluations. For more details on
the implementation issue, see (1].

The above is the main idea for the Ferrari-
Beérenguer-Alengrin two step estimation method. We
call it FBA method. It is built upon the assumption (5)
and the condition (11). Condition (11) guarantees the
accurate reduced frequency estimation and leads to the
following condition on N(k):

IN)| > 4(1 +n,,), 1<k<2N, (19)
where n_, is the maximum ambiguity order. Clearly,
when n_ . is large, |N(k)| needs to be large. Large
[N (k)| may increase ambiguity order errors as
mentioned in {1]. One way to relax the condition
(11) or (19) is as follows, which also serves as a
foundation for the optimal multiple PRF discussed
latter.

Assume

fp :
—— <l e, NKI>T+ . 2
N ( T+n,.. OJ'
In this case. although the circular mean (12) may not
be equal to the reduced frequency f, in (8), f, takes
one of the following five values:

f.p.  F.Ap-05  F.(p+05. .
L.o-1,  Ff(p+1

where f,(p) is the conventional mean, f,(p) =
(faps1 + frp+2)/2. and f, are obtained from (7)
and (10). It is because the unknown parameter [ in
(10) may only take 0, —1 or 1, when the condition
(20) holds and 0 < f, < 1. Thus, when N, = 1, the
estimation of f, and n, become the search of the
optimal f.(p) and n, in the maximum likelehood
function L(f,.n) in (14) among

2L

£, €S(ME{F,(p).7.(p) - 05.F,.(p) + 0.5,
(- 1Lf.(+1} (22)

and |n| <ng,.c

L(f(p)n,) = esBAX L(f,n) (23)

which also has only finite comparisons.

When N, > 1, there are at least two methods to
take the advantage of this multiplicity. One is to
take the circular mean of all the above estimated
£.(p) as in (13). The other is to search the optimal
f among all possible elements in the sets S(p) for
p=01,...,N,- L

L(f n)= ,
n,) esmax L(f,n) eZ)
where
Np—-1
S=Jswp.
p=0

Note that the condition (20) can be further relaxed by
allowing more possibilities for the reduced frequency
f, from the mean f,. Thus, the size of N(k) can
basically be arbitrary. The detection method in
(20)-(24) is called modified FBA method. On the other
hand, the condition (5) may cause high sidelobes of
the maximum likelihood function L(f,,n) in (14) and
therefore reduce the performance when additive white
noise b, (n) in (2) is significant. The goal of the rest of
this paper is to relax the condition (5) and search for
the optimal linear relationship between N(2p + 1) and
NQ@2p+2)instead of N2p+2) = -N(2p + 1).

It should be mentioned that another difference
between the FBA method and the above modified
FBA method is the following. In the FBA method,
the angular mean is taken over the N, bursts as shown
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in (13), while, in the modified FBA method. the
multiplicity of the bursts gives more possibilities to
search for the correct folded frequency. The angular
mean may reduce the error variance of the reduced
frequency, while the more possibilities of the search
may provide more accurate estimate of the reduced
frequency. However. the latter one clearly causes more
computations.

i, OPTIMAL MULTIPLE PRF AND DOPPLER
FREQUENCY DETECTION

In this section, we use the same signal model as
described in Section II, where the assumption (5) is
relaxed as

NQ2p+2)= —aPN(Zp + 1),

for p=0,1,....N, -1 (25)

where N(2p + 1) are positive integers and a,, are
positive real parameters. The goal of the rest of this
paper is to optimally determine the parameters a,
given NQ2p+ 1) for p=0,1,...,N, — 1 in terms of the
lowest sidelobes of the maximum likelihood function
Lif.n).

With (25). an analogous formula of (9) for the
reduced frequency is

f}pol + Opf.’.p*l

| +a My =1

f’: p=0,1,...

14

(26)

where f, are defined in (8). One can see that the
conventional mean (9) with the property (5) becomes
the conventional weighted mean (26) with the
property (25). The circular mean in (12), however,
cannot be generalized to the general setting of the
parameters a,. In other words, the reduced frequency
£, can not be obtamed as in the FBA method from
the estimated individual fk in (8), (10), and (25)
with general parameters a, unless a, = 1 using the
periodogram method. Fortunately, the argument in
(20)~(24) can be generalized as follows.

Without loss of generality, we assume the property
(20). i.e.,

N@Rp+1)>1+n, and
INQp+ 1) > ! +""“". p=01,....N,~-1.
ap
27
Let
Af2pol +to f2p+2 _

f.p)= va, p=01,..N,-1

(28)

where fk are obtained from (7), (8), and (10)
with N (k) satisfying (25) instead of (). For p =

CORRESPONDENCE

)

S(p)i\{—,

l+(

- l—np
_f,(p):1 (29)
+“P

JAp) = l}.

When a, = 1, the set S(p) in (29) is the same as the
set S(p) in (22). Similar to (21), we have

f€8(p). p=01,...N,-1 (30)
Let
Ny-1
s=Jsp. (31)
p=0

Then the maximum likelihood estimates for the .
reduced frequency f, and the ambiguity order n, are f,
and #, that maximize L(f,n) for f € S and |n| <n_,
ie,

LA =, max  L(fm) (32)
where L(f,n) is similar to (14):
2N, n-1
L(f.n) = %ga;(f,q)’;)yk(m)exp(— j27fmTr(k))
v[!
~exp< J2x N'('k)m)[ (33)

where

g=1

k-1
a,(f,n) = Aexp (j27m,(j + n)ZTr(q))
(34)

1+L

Tr(g) = NG

and y,(m) are the demodulated noisy data at the
receiver:

i (m) = a,(f,.n,)exp(j2r f,mTr(k))
- exp (jZWN(k) ) + b, (m) 35)
where f, = f, +n, is the unknown Doppler frequency

and b, (m) are additive white noise. The final Doppler
frequency estimate is fo f, +h,.

The performance of the above detection method
depends on the property of the maximum likelihood
function L(f,n). The lower sidelobes of L(f,n)
are, the better performance of the detection is. The
sidelobes depend on the choice of the parameters a,
in (35), when N(2p + 1) are given. We next want to
discuss the optimal choice of these parameters.
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By substituting (34)-(35) into (33), we have

2N, k-1 ’
Lif.n) = 1Al Zcxp (/2::1‘([, - f+n, ~ n)ZTr(q‘)
k=) .

y=1

n -t

. n -n "
-Zexp(;'_‘:(,l, ~ fymTrik)yexp (}2.‘ i m)
m=0

2N, k-1
= ;AiZZZCXP (ﬂ:n)(f, —f +n, —n)ZTr(q))

Ck=d g=1

exp (jﬂ(n’ ) ((f, - ))Tr()+ '-'W};—'))

in (= Try+ 201) 2
sm(..n‘[(f,—f) r(k) + N O i);.

-

. sin (;; [(f, — P)Tr(k) + %{IT"}) . (36)

Clearly, the mainlobe value of the above maximum
likelihood function is its value when f = f, and
n=n.:

L(f..n,) = |AP2N,n,. (37

Since f, € S(p). the offset value f, - f in (36) may
only take the values in the following set, when f € S
defined in (30):

< ANU{ , % 2 Za,
S = 11,42, —— ,

! e 1+a, l+a, 1+a,
i2ap +(1 -—ap) +2(1 —op)
l1+a, l+a, l+a,
i(li—Zap) i(2:tap)} (38)

1+a, " l+a, ’

The offset value n, —n is in the set
{=1.22.....x2n, }.

Let E“de,obc(ao,a,....,o,,,b_,) denote the total
energy of all the sidelobe values of the maximum
likelihood function L(f.n) in (36). Then, by
normalizing A = 1 it can be expressed by

E*'delolx(oO'Ol-----atv.-l) = Z Z

[€Soa 0< 1 $2mu

. exp | j2rn,(f + n) (l ¥ ———)
lk:l a=1 N(q)

- ‘ 1 n

-exp (jvr(n, - 1)(f <1 + m) + Xl—(k—)))
1 n
) R WAL A I
sin (T&'n, [f (1 + N(k)) + N(k)}) \ (39)

| sin(ﬂ{f(1+ﬁ—:k_)> +1—V—n(-6]>

where N(2p +2) = —aPN(2p +1.p= 0.1,....N, - 1,
and S, is defined in (38). Given N(2p+ 1), p =

0.1.....N, — 1. and n,,,. the optimal parameters .
p=0.1...N, - 1. can be obtained by minimizing

the cost function E_gejoe(rn- -2 ay,-)) in (39) for
ap, >0, 1€,
E_jetobel (s @yoesen ”.\".-I)
= min E ((CTN T (g 1)
Q0 >0 >A1..-Qny =1 70N, -1 sdelobet 710 N -1
(40)
where, by (27),
( l + nm.n
| = ——
PONQ@2p+D)

One may see that an explicit solution for the optimal
a, is not possible. However, any existing optimization
methods work for the above problem.

Let us consider the simpliest case, N, = 1. In this

case,
Soffet { ! '1+a0'1+ao'l+ao'
:t200 :‘:(1—00) 12(1—‘00)
1+a, 1+0qg l+ap
+(1 £+ 2ay) :i:(Zioo)} @1
I +a 1 +a
and

E jgeiope(@0) = Z Z

oS0 i
| sin (xn, [f(l *N ) D
[l ) )
(ol
_exp (,-,r(n, - 1){f (l - aohl/(1)> B aozc(l)D

. l n z
| sin (7"": [f (l - 00N(1)> - aoN(l)])

- l "

sin (W [f (1 - aoN(”) - aoN(l)]>

Let us see some numerical examples of
E ., se1ope(@)- Consider N(1) = 40 and n, = 12. Figs. 2,
3, and 4 show the E o (ap) VETsus ag whenn_, =
3, S, and 12, respectively. One can see that the optimal
a strongly depends on the maximal ambiguity order
n_ .. Where the optimal a, are &, = 0.57, 1.85, and

2.01 for n,, =3, 5, and 12, respectively.

)

o) * #t5))
( N(
1 n
¢

—~

(42)

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical examples
to compare the performances for the modified FBA
method and the method with optimized PRFs
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Fig. 3. E 4 pe(ag) when N(1) =40, n, = 12, and n_.. =35 Optimal 60 =1.85.

proposed in this work. The following parameters are
used in our simulations: N(1) =40, N, = 1, n, = 12,
and N(2) = —ayN (1), where ap = 1 for FBA method
and a, the optimal &, for the method proposed in this
work. The additive noise b,(n) in the known noisy
radar data y,(n) in (2) is assumed white Gaussian
noise with mean 0 and variance o?. As mentioned at
the end of Section III, the optimal a, depends on the
maximal ambiguity order n_,,. Two different n_,

are tested: n_. =3 and 12. Let M be the number

of signal realizations. Let f,(k) be the true Doppler
frequency and ]’D(k) be the estimated one at the kth
signal realization. Then the mean squared error (MSE)
is calculated as

M 7 2
MSE = Zk:l |f0(:l) - fD(k)' . (43)

CORRESPONDENCE

The signal-to-noise ratio (SNR) for the additive
Gaussian noise is calculated by SNR = A%/02, where
A is the transmitted signal amplitude.

When n_,. =3 and N(1) = —=N(2) =40 > 4(]1 +3)
= 16, i.e., the condition (19) or (11) holds for the
accurate circular mean formula (12). The FBA method
works in this case although the parameter a = 1
is not optimal in terms of the sidelobe values of
the maximum likelihood function E 4, .. (ag). The
optimal parameter ag in this case is &, = 0.57 as
studied in Section III. When o, = 0.57, clearly the
number N(2) = —aoN(1) = 22.8 is not an integer. For
the DFT computation purpose, rounding o = 0.57 to
o, = 0.6 may be needed for N(2) to be an integer.
When o, = 0.6, N(2) = —24. As mentioned in Section
ITI, when a4 # 1, the accurate circular mean no longer

n
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Fig 5§ Companison of reciprocal MSE of Doppler frequency estimations: FBA method and modified FBA mcthpd with optimal PRFs
(or ay) Solid hine modified FBA method with optimal a, = 0.57; dashdot line: modified FBA method with rounded optimal a4 = 0.6;
’ dashed line: FBA method. N(1) = 40, n, = 12, maximal ambiguity order n,,, = 3.

holds. In this case, we use the modified FBA method
for the Doppler frequency detection. 20,000 Monte
Carlo tests are implemented, i.e., M = 20,000 in (43).
Three curves are plotted in Fig. S for the reciprocal
MSE. I/MSE, of the Doppler frequency estimations.
The solid line is for the modified FBA method with
the optimal a = 0.57; the dashdot line is for the
modified FBA method with the rounded oy, 0.6; the
dashed line is for the FBA method. A significant
improvement of the MSE at the transition SNR band
can be clearly seen.

As a remark, when o, = 1, the FBA method and
the modified FBA method both work. From our
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numerous numerical examples, these two methods
have the same performance in this case.

When n_,, =12 and N(1) = -N(2) =40 <
4(1 + 12) = 52, i.e., the condition (19) or (11) for the
accurate circular mean formula (12) does not hold. In
this case, the FBA two step method does not work
as shown in Fig. 6 and the modified FBA method
should be used. The optimal parameter a is &y =
2.01. 10,000 Monte Carlo tests are implemented, i.e.,
M = 10,000 in (43). Similar to Fig. 5, three curves are
plotted in Fig. 6 for the reciprocal MSEs. The solid
line is for the modified FBA method with the optimal
ag = 2.01. The dashdot line is for the modified FBA
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Fig. 6. Comparison of reciprocal MSE of Doppler frequency estimations: FBA method, modified FBA method, antl modified FBA
method with optimal PRFs (or ag4). Solid line: modified FBA method with optimal a; = 2.01: dashdot line: modified FBA method,
dashed line: FBA method. N(1) = 40, n, = 12, maximal ambiguity order R = 12.

method with o, = 1. The dashed line is for the FBA
method. From Fig. 6, one can clearly see that in this
case the FBA method fails, and the modified FBA
method with the optimal a, outperforms the one with
nonoptimal a,.

V. CONCLUSION

In this paper, we studied the Ferrari-Bérenguer-
Alengrin’s two step Doppler frequency detection
method, where the folded frequency is first estimated
using the circular mean and the ambiguity order is
then estimated using the quasi maximum likelihood
criterion. The accuracy of the folded frequency
depends on the use of the particular pairs of PRFs.
When the folded frequency is not equal to the circular
mean. we modified the FBA method with a finite
possibilities of the folded frequency and the ambiguity
order. More importantly, we studied and formulated
the optimal PRFs in the modified FBA method in
terms of minimizing the total sidelobe energy of the
maximum likelihood function. Better performance of
the modified FBA method over the FBA method was
shown by numerical examples.
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Abstract
An N x K (N 2 K) ambiguity resistant (AR) matrix G(z) is an irreducible polyno-

mial matrix of size N x K over a field F such that the equation EG(z) = G(z)¥(z) with E

an unknown constant matrix and ¥(z) an unknown polynomial matrix has only the
trivial solution E = ady, V(z) = alx, where a« € F. AR matrices have been introduced
and applied in modern digital communications as error control codes defined over the
complex field. In this paper we systematically study AR matrices over an infinite field F.
We discuss the classification of AR matrices, define their normal forms, find their
simplest canonical forms, and characterize all (K + 1) x X AR matrices that are the
most interesting matrices in the applications. © 1999 Elsevier Science Inc. All rights
reserved.

AMS classification: 15A21; 15A24; 94A12; 94B10; 94B12

Keywords: Irreducible matrix; Ambiguity resistant matrix; Polynomial matrix; Error control coding

1. Background and introduction

An error control code defined over the complex field C maps each K input
samples into N output samples, where N is usually greater than K so that the
code is used to resist errors in a channel and the code is called N x K code. An

* Corresponding author. Tel.: 302 831-8038; fax: 302 831-4316; e-mail: xxia@ee.udel.edu.
! E-mail: gzhou@ee.udel.edu.
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N x K linear error control code is usually represented by an N x K polynomial
matrix G(z), where each entry of the matrix G(z) isa polynomial of the variable
z (or the delay variable z~! in engineering) over complex field C. Let X(z) be a
K x 1 polynomial matrix (or vector) as an input signal. Then ¥ (2) = G(2)X(2).
is the N x 1 polynomial matrix (or vector) of the code output signal, which is
usually transmitted through a real world channel, wired or wireless. In a_
channel there are two common distortions. One is an additive random noise
and the other is the so-called intersymbol interference (ISI). An additive ran-
dom noise means that the received signal is ¥(z) = G(z)X(z) + n(z) instead of
Y(z), where 7(z) is the polynomial vector of the additive noise. Notice that the
above additive noise only affects each individual sample of the received signal.
The ISI is another type of distortion in a channel, which is usually due to a high
speed transmission and cause distortions between received samples. Mathe-
matically, the ISI is an M x N polynomial matirx H(z) and the received signal is

Y(z) = H(2)Y(z) = H(z)G(2)X (2), (L.1)

where G(z) is an error control code.

Resistance to an additive random noise means that the input signal X(z) can
be restored from the received ¥ (z) distorted by an additive noise n(z) without
knowing 5(z). To achieve this goal, the distance between codewords
Y(z) = G(2)X(2) after an error control code plays the most important role, see
for example Ref. [1], which is beyond the scope of this paper. Similarly, re-
sistance to the ISI means that the input signal X (z) can be recovered from the
received ¥(z) in Eq. (1.1) distorted by an ISI H(z) without knowing H (2). To
achieve this goal, ambiguity resistant (AR) matrices have been introduced in
Refs. [6,7), which are based on the irreducibility of polynomial matrices defined
over the complex field C. In this paper, a general infinite field F is considered.
In what follows, F denotes an infinite field unless otherwise specified.

The definition of irreducible polynomial matrices over F induced from Ref.
[3] is as follows.

Definition 1. An N x K (N > K) polynomial matrix G(z) over F is irreducible if
and only if there is no K x K polynomial matrix R(z) over F with non-constant
determinant such that G(z) = Q(z)R(z), where O(z) is an N x K polynomial
matrix over F. .

The irreducibility can be characterized by the following lemma which offers an-
easy method to judge the irreducibility of a matrix when F is algebraically closed.
Lemma 1. An N x K (N > K) polynomial matrix G(z) over an algebraically-
closed field ¥ is irreducible if and only if it is full column rank (ie.,

rank(G(z)) = K) for any z € F.

£
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Remark 1. In Ref. [3] the definition of the irreducibility of a polynomial matrix
over C is given by the necessary and sufficient condition in Lemma 1. However,
when F is not algebraically closed, the irreducibility in Definition 1 is not

. equivalent to the necessary and sufficient condition in Lemma 1. As an

example, polynomial matrix (z2 + 1)(z2 + 2)Iy has full rank for any real z € R.

_ It is, however, obviously reducible.

Definition 2. An N x K (N > K) irreducible polynomial matrix G(z) over F is
called AR if and only if the following equation

EG(z) = G(2)V(z) (1.2)

with E an unknown constant matrix and ¥(z) an unknown polynomial matrix
over F has only the trivial solution E = aly, ¥V (z) = alx, where a € F, Iy and Iy
are N x N and K x K identity matrices, respectively.

It has been proved in Refs. [6,7] that, if the code G(z) in Eq. (1.1) over the
complex field C is AR, then the input signal X(z) can be blindly recovered from
the received signal Y(z) in Eq. (1.1), where the knowledge of the ISI channel
H(z) is not necessary. Therefore, the resistance of the ISI can be achieved by
choosing a code G(z) to be AR.

Some necessary conditions for a code G(z) over C to be AR are given in Ref.
[6], for example, G(z) is not a constant matrix, and N > K. Furthermore, it has
been proved in Refs. [6,7] that the following N x (N — 1) codes G(z) are AR
over C

"1 0 0 -~ 0 07
z 1 0 0 0
0 z 1 - 0 0

C@=1{ . (1.3)
0 0 0 - z 1
[0 0 0 - 0 Z vy

for any positive integer r. In Ref. [8], the following N x (N — 1) polynomial
matrices

[ 1 0 0 0 7
0 1 0 0
0 0 1 0
G(z) = (14)
0 0 0 |
LFi(z) F(z) FB(z) - Fvai(2) d vy

P e at]
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have been studied. The following necessary and sufficient condition for G(z) in
Eq. (1.4) to be AR is given in Ref. [8]:

{1,F(2),R(2),. .., Fv-a(2)}

is linearly independent over C, which can be also seen in Theorem 4 in this

paper for a general infinite field F. The codes G(z) in Eq. (1.4) are called sys- -

tematic codes, which is analogous to the conventional error control codes de-
fined over a finite field [2] for the encoding convenience.

In this paper, we systematically study AR matrices over F. We provide
canonical forms for all N x K AR matrices and characterize all N x (N — 1)
AR matrices. The characterization is easy to use. Since, in coding applications,
K samples are expanded to N samples, when an N x K code is used. This ex-
pansion means that the bandwidth needs to be expanded in a transmission,
which is usually expensive. Therefore, the smallest sample expansion in coding
is usually desired. Clearly, the codes of size N x (N — 1) provide the smallest
bandwidth expansions, and therefore are the most interesting codes in appli-
cations. The characterization of all N x (N —1) AR matrices provides the
opportunity to search the optimal one in resisting other distortions, such as the
additive random noise as mentioned before. Some results have been obtained
in Refs. [8,9] along this direction.

This paper is organized as follows. In Section 2 we present the canonical

forms for N x K AR matrices. In Section 3, we provide the necessary and .

sufficient conditions for a polynomial matrix of size N x (N — 1) to be AR in
terms of its systematic or canonical form.

2. Classification of AR matrices and canonical form

Let F[z] denote the polynomial ring over an infinite field F. Let My (F[z])
denote the set of all N x K matrices with elements in F[z].

Definition 3. The transformation Tp o of Myxx(F(z]) defined by
Tpo(4) = PAQ for all 4 € My« (F[z]),

where P and Q are N x N and K x K unimodular polynomial matrices (i.e.,
their determinants are non-zero constants), is called an equivalence transfor-
mation of My.x(Fz]).

It is well known that the set of all equivalence transformations of.

My« (F[z]) is a group of transformations with 7j, ,, the identity transforma-
tion, and with the formulas TpTrs = Trrsp and T, é = Tp_1,0-1. This group
induces an equivalence relation on My (F[z]) and two matrices 4 and B are

P
N . pad st sbeis 3RS
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said to be equivalent over F if there exists an equivalence transformation Tpp
such that 7p(4) = B. Since polynomial ring F[z] is a principal ideal ring, we
know that every matrix 4 € My, (F[z])is equivalent to a diagonal matrix D(z),

_ which is known as the Smith form decomposition [4,5]. This general theory

applies to AR matrices, but the equivalence relation defined above does not
preserve the AR property. To do so, we define AR-equivalence transforma-

" tions as follows.

Definition 4. An equivalence transformation Tp is called an AR-equivalence
transformation if and only if P is a non-singular constant matrix and Q is a
unimodular polynomial matrix.

From now on, in order to avoid confusion, 4 will represent a constant
matrix and A(z) will represent a polynomial matrix unless otherwise specified.
We have the following result.

Theorem 1. An AR-equivalence transformation preserves the AR property, Le.,
an N x K polynomial matrix G(z) is ambiguity resistant if and only if PG(z)Q(2)
is ambiguity resistant for any N x N invertible constant matrix P and any
unimodular polynomial matrix Q(z).

Proof. Let E\PG(z)Q(z) = PG(z)Q(z)Vi(z). Then P~'E\PG(z) = G(2)Q(z)V1(2)
0~'(z). Hence the ambiguity resistance of G(z) implies that Q(z)¥1(z)Q0' (2)
= aly and P~'E|P = aly, which implies E| = aly, ¥i(z) = alx for some non-
zero constant « € F. On the other hand, if PG(z)Q(z) is AR, EG(z) = G(z)V (2)
means PEP~'[PG(z)0(z)] = [PG(z)Q(2)]Q~'(2)V(2)Q(z) which means PEP!
=aly and Q7 (2)V(2)Q(z) = alx for some non-zero « € F. Hence E = ady,
V(z) = alg and G(z) is AR. [

We can easily check that AR -equivalence transformations form a subgroup
of equivalence transformations. They also induce an equivalence relation
among AR matrices. We call G,(z) and G(z) AR-equivalent if there is an AR-
equivalence transformation Tp o such that T oG\ (z) = Ga(2).

For an irreducible N x K polynomial matrix G(z), we can check that G(z) is
equivalent to matrix [/, 0]T (if N > K) where AT means the transpose of matrix
A and 0is the K x (N — K) matrix with 0 entries. We now want to seek a simple
form of matrix G(z) under AR-equivalence, which is useful for AR charac-
terization. The following proposition was given in Ref. [6], where result (a) is
useful later as a necessary condition on AR matrices, and result (b) makes us
only need to consider the case N > K.

Proposition 1. If an N x K (N 2 K) polynomial matrix G(z) over F is AR, then
(a) G(z) is not AR-equivalent to a matrix whose first column is (1,0,. .. ,O)T;
(b) N >K.

P
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Proof. (a) Suppose G(z) is AR-equivalent to a matrix with first column
(1,0,... ,0)T, then by simple equivalence it follows that G(z) is AR-equivalent
to a matrix of the form -

Gi(2) [1 0 ]
z) = ,
! 0 H(z)
where H(z) is an (N — 1) x (K — 1) polynomial matrix. Setting
2 0 2 0
E = : d V = y
[0 IN-l] o @ [0 IK—l]

we see that EG,(z) = G\(z)V(z) and V(z) # alx for any non-zero constant

o € F. In other words, G(z) is not AR.
(b) If N = K, then the irreducibility of G(z) means G(z) is unimodular. So
for any E, ¥ (z) = G™'(2)EG(z) satisfies EG(z) = G(2)V (z). So G(z) is not AR.
a

Lemma 2. Any polynomial matrix A(z) € Myxx(F[z]) with rank=K is AR-
equivalent to

[ g11(2) 0 0 ]
(2 gn(z 0 0
Lg31(2) gn(z) gn(2) .
, @.1)
g2 gz g(?) ... gxx(2) '
L gni(2) gmaz) gwms(z) ... gk (2) |

where deg(g11(z)) < deg(gx(2)) < - -- <deg(gx(z)). Furthermore, deg(g;(z)) <
deg(gii(z)) for any j < i.

Proof. Let A(z) be an N xK matrix with entries a;(z). Let
di(z) = GCD(a; (2), . . .,aix(z)). By row permutation only we may assume that
di(z) # 0 and deg d; is non-decreasing with i for i = 1,...,K. Now A4(z) is AR-
equivalent to (by only column transforms)

d\(2) 0 et 0
bzl(Z) bzz(Z) e by((z)
le(Z) sz(Z) ‘e bNK (Z)

Furthermore, deg[GCD(bx(2), ..., bi(z))] = deg[GCD(b(2),.. ., bi(z))]
> degd; > degd,(z) fori = 2,...,N. Similarly we can deal with the submatrix
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bzz(Z) ce bZK(Z)
Bizy=1| ... ... ...
sz(Z) . bNK (Z)
_ with rank(B) = K — 1. By induction the lemma is proved. [

Remark 2. Form (2.1) has a direct relationship with row-Hermite forms and the
above lemma can also be proved by using Theorem 6.3-2 in Ref. [3]. From Ref.
[3] the row-Hermite form of a matrix 4(z) is equal to 4(z)Q(z) where Qz)isa
unimodular K x K matrix. By row permutations, it is guaranteed that the
diagonal elements g;(z) are non-zero and degg;<deggy if 1<i</j<K.
Using column operations again the polynomial matrix can be reduced to the
form in Lemma 2.

Lemma 3. For L polynomials fi(z) #0,f2(2),...,fL(z) over F, if deg(GCD
(cfi + fo. o, J1) 2 deg fi for any constant c€F, then filf2, filfs,
S hife

Proof. We first prove the case L = 3. It is obvious if f; is a constant. Now
suppose deg fi > 1 and d.(z) = GCD(cfi + f2,f3)- Then degd. >1. Let
d= GCD(flvﬁ’f3)' Then fl = dglyf2 = dg21f3 = dg3 and GCD(gligZag3)
=1, deg(GCD(cg; + £2,83)) > degg). But based on the fact that if
GCD(g1,g2,g3) =1 over an infinite field F then there exists ¢ € F such that
GCD(cg) + £2,83) = 1. Hence the above two cases mean GCD(cg1 + £2,83)
= |. Therefore we have GCD(cf + f2,/3) = d x GCD(cg: + £2,83) = d. Now
degd > deg fi and d|f, imply d(z) = c¢fi(z) for some non-zero constant c.
Hence filfs, filfs. For general L we know deg(GCD(cfi + /2. f3;- -, /1))
= deg(GCD(cfi + f2,GCD(f3,..../1))). By the above proof, filf2, 1i|GCD
(f3.-- -, /1) Hence filf, Alfs, .- Al O

Lemma 4. If G(z) = (gi;(2)) is a non-zero matrix in Myxx (F[z]) of the form (2.1)
and if g (z) #£0 is an element of G(z) with m = deg(gn) < deg(g;;) for any
g,j(2), then either g\\(z) divides all g;;(z), or else there exists an AR-equivalence
transform T such that T(G(z)) = H(z) has the form (2.1) and hy\(z) # 0 is of
degree less than m.

Proof. Suppose g(z) does not divide every element of G(z). By Lemma 3,
there exists a constant c€ F and i,2<i<N such that deg(GCD(cgi

481,82 &iir- - - 8ix) < deg g = m. This means that G(z) is AR-equivalent
to a matrix with i-row (cgy1 + gi1,&2.- -+ &iir - - - 8ik ). Now Lemma 2 guaran-
tees that G(z) is AR-equivalent to H(z) of form (2.1) with deg 4; < deg(GCD
(cgn+g,1,g,z,...,g,-,,.‘.,g‘,()<m. 0
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Combining Lemmas 2 and 4 we can obtain the following result.

Theorem 2. Any non-zero matrix A(z) € Myxx(F[z]) with rank=k is AR-
equivalent to a matrix of the following form

[ g11(2) 0 0 0 0 ... 07
gu(z) gn(2) 0 ... 0 0 ... 0

8i (Z) gkz(z) gk3(Z) e gkk(z) 0 e 0

Lgvi(2) gv2(2) gw(z) ... gm(® O ... O
with g|g(is1)i+1), gilg forany i=1,2,...,k—1and j > i.

Proof. Obviously, 4(z) is AR-equivalent to a matrix of form [B 0] where B is an
N x k matrix with rank(B) = k. By Lemma 2, we have that any non-zero matrix
is AR-equivalent to a matrix as above such that gy;(z) has the minimum

degree. If g;;(z) divides all gy(z) for any k, ! > i, Theorem 2 is proved. If g;(z)
does not divide some g(z) for some k, ! > i, we then consider the submatrix

[ gi(2) 0 0 0 7
gu+ni(2) gu+1yi+1)(2) 0 e 0
8(2) girn(2)  gin(@ ... gu(2)
| gnil2) gnvirn(z) g+ (@) ... gm(2) ]

Therefore, by Lemma 4, under AR-equivalence we have that g;(z) divides all
gu(z) forany k,l>=i. O

By the above theorem, for irreducible matrices, we have the following result.

Theorem 3. Any irreducible matrix in My« (F|z]) is AR-equivalent to a matrix of
the following form

[ 1 0 0 - 0 0
0 1 0 . 0 0
o o o .. 1 o 2.2)
gx1(z) gx2(2) gx3(2) ... grx-n(z) &xx(z) ‘
[ gvi(z) gwa(2) gws(z) ... gvk-n(2) gmw(2) ]

1§
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with GCD(gkx, gk+1)k,---,8vk) = 1, deggx <deggx for K<i<j<N.
Furthermore, gy(z) can be either 0 or a non-constant polynomial (ie.,
deggy > 1) for K<k<Nand 1<I<K -1, and gy1(2) = -+~ = gwy-1)(2) = 0,

-1 <deg gn < deg gyiny < --- < deg gax for some L where 1 <L < K.

. Proof. By Theorem 2, if g;;(z) is not a non-zero constant for 1 <i< K — 1, then

gi(z) = gi(z)h;i(z) for i < j< N. For example, assume i=1. Then

1 0 0 . 0
h21 (Z) 8 (Z) 0 . e 0
_ gu(z) 0
Gla) = ki (z) gxa(z) gx3(z) ... gxx(2) [ 0 I, ]
LAni(2) gna2(z) gws(z) ... gnk(z)

which contradicts with the irreducibility of G(z) because the leftmost matrix is
not unimodular. Similar arguments can be used to prove that
GCD(gkk, gk+1x, -+, gvk) = 1. When gy(2) is a non-zero constant for some
k.Iwith K <k<Nand 1 <I<K - 1, it can be reduced to zero by implementing
a constant elementary row operation, i.e., gu(z) can be reduced to zero by an
AR-equivalence transformation. [

Remark 3. The result in Theorem 3 is the simplest form we can have, which
cannot be improved further. For example, we can directly check that

1 0
z P
2 D41

is an irreducible matrix, we cannot simplify it further under AR-equivalence
transformations. This polynomial matrix is actually an AR matrix from The-
orem 5 of the next section.

Definition 5. If A(z) is AR-equivalent to G(z) of the form (2.2), then G(z) is

“called the canonical form of A(z). If gkx = 1, as indicated in Section 1, we call

G() the systematic form of A(z).

By the above results, we can easily classify irreducible matrices as well as AR
matrices. So, to study the AR property of a polynomial matrix, we only need to
study its canonical form or systematic form.
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3. (K +1) x K AR-matrices

In the above sections we have discussed the classification of AR matrices

and it was shown that every N x K AR matrix is of form (2.2). In this section, .

we present the sufficient and necessary conditions for a (K + 1) x K matrix to

be AR. These conditions can be used in the design of error control codes in

applications.
We first see the simplest form, i.e., the systematic form as follows (also see

Ref. [8)).

Theorem 4. If G(z) has systematic form, i.e.,

3 1 0 0 cee 0 7
0 1 0 0
0 0 1 0
G(z) =
0 0 o ... 1
| gksi(2) k+12(2) Bwe3@ - Swrix(@) ] kyryk

then G(z) is AR if and only if {1,gx+11(2), 8x+12(2), 8x+1)3(2); - - -, 8x+11x (2)}
are linearly independent over F.

Proof. Let N=K+1. We first prove the necessity. If
{1, gn1(2), gn2(2), gn3(2)s - - s gnk(2)} are linearly dependent, then there exists
k€ {1,...,K} such that

K
gnk(2) =c+ Z cigni(2)-

=1k

Hence, there exists an AR-equivalence transform that transforms G(z) into a
matrix with its first column as (1,0,... ,O)T. Proposition 1 means G(z) is not
AR. Thus

{gNl(z)vgNZ(z)’gNJ(Z)v v 1gNK(z)}

are linearly independent.
We now prove the sufficiency. Under AR-equivalence, we may assume

1 <deg gy < deggn < --- < deggn- By
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1 0 0 '
e ... elNJ ) 0 1 cen 0 . :
eN] e eNN O 0 “e l e AR AN AL St
gn(@) gm(z) ... gwx(2) ) )
1 0 ... 0
0 1 0 [U“(Z) U]K(Z)}
0 0 “es 1 U[(](Z) - UKK(Z)
gn(z) g2 ... gwx(2)
we obtain
e; +ewgni(z) = v;(z) forij=1,2,... K, (3.1)
K
ey; + eNNgNj(z) = kaj(z)gNk(z) forj=1,2,...,K. (3-2)

k=1
First, from Eq. (3.1) and Eq. (3.2) we obtain

K-1

enj + emen(2) = ) (e + egn(2))gm(2) + (ex; + exven(2))gnx (2).
k=1

Taking j = K we have

>

eng + exngnk(z) = (e + exwgnk (2))gm(z) + (exx + exngnr(2))gnk (2).

>
Il

Comparing the highest coefficients of the two polynomials we have exx = eny
and ey = 0 forany k = 1,..., K. Hence v;(z) = e;; is in fact a constant for any

ij=1....,K. Since 1<deg(gm) < deg(gw2) < deg(gnx), 1,8n1,...,gnx are
linearly independent. By Eq. (3.2) again we have

K
ev; + exvgni(z) = kajgNk(Z) forj=1,2,... K.

k=1

Hence v, = e; = 0 except possibly v;; = e; =eny for j=1,2,... K. This is
exactly what we need. O »

We now consider the general canonical form (2.2) G(z) withN = K+ 1. We
have the following necessary and sufficient conditions for all possible
(K +1) x K AR matrices.
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Theorem 5. Let G(z) have the cononical form (2.2) with N=K + 1.

() If 1 <deg gy < deg gy < --- < deg gk, then G(z) is AR if and only if
GCD(gkx, gnk) = 1. In this case, irreducibility and ambiguity resistance are the
same. :
(b) I gni(z) = -~ = gnu-1(z) = 0,1 < deg gm < -+~ < deg gux, then G(2) is
AR if and only ifGCD(gKK,gNK) =1, {l’gKlng‘Za---7gK(L—l)>gNLa'--,gN(K—I)},
are linearly independent over F, and W N W, = {0}, where

W, = span{gxk, ENk8K1, - - - » ENKEK(K~-1) }»
W, = span{gxx, 8kk &K1 - - - » EKKEK(L—1)s EKKENL» - - - ngKgN(K—l)},

where span means the set of all linear combinations with constant coefficients.

Proof. (a) This is a special case of (b): the case of L = 1. If GCD(gnk, gxx) =1
and 1<deggy <---<deggwx, we can easily check that
span{gnk, gNk8K1; - - - 7gNKgK(K—l)} N span{gkk, EkKEN1, - - - agKKgN(K—l)} = {0}.
So we only need to prove (b).

(b) EG(z) = G(z)V(z) we get the following equations:

ey + exgr;(z) + ewgn(z) = vy(z), 1< j<K -1, (3.3)
. _ ,
ex; + exx8x;(2) + exvgn;(z) = ZgKM(Z)UMJ(Z)’ 1<j<K -1, (34)
m=1
K .
en; + enk8x;(2) + exvgn(2) = D _gwm(2)omi(2), 1<J<K -1, (3.5
m=1
exgix(z) + engnk(z) = vix(2), 1<i<K-—1, (3.6)
. :
exxgix (z) + exngnk(2) = ) _Lkm(2)omk(2), (3.7
m=1
K
enxgix(2) + engnk(2) = D 8rm(2)omk (2)- (3.8)
m=1

Substituting Eq. (3.6) to Eq. (3.8) we obtain

K-1 :
enkgxk (2) + enwgnx (2) = ZgNm(z)(engKK(z) + enn gk (2)) + vk (2)8nk (2),

m=1

L s
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ie.,
K-1 K-1
e — vxx(2) — ZemNgNm(z) gnk(2) = EengNm(z) — enx | 8xx (2)-
m=1 m=1
. So GCD(gnk,gxx) = 1 implies
X-1
gk (2) ZengNm (z) — enx
m=1
)

Hence 1<deggn <---<deggwx implies ey =0 and

i=L,...,K—1and

K1
vk (2) = enw — ZemNgNm(z)' (3.9)
Y m=1 -
" Plugging Egs. (3.6) and (3.9) into Eq. (3.7) we get
K-1
€xN — ZemNgKm (z) |gnk(2)
m=1
K-
=.| env — exx + Z(engKm — emngnm(2)) | 8xx(2),
m=1
or
K-l
exv — )_enn8kn(2) | Erk(2)
i m=1
! -1 K=1
= (eNN - exx + ZengKm = ZemNgNm(z) gxx(2)- (3.10)
\ m=1 m=L
Now wiNnw, = {0} and the linear independence of
{1.8k1s- -\ 8KiL=1),8NLy - - - EN(K-1)} mean exk = enn, ex =0 for
i=1,....L.—-1, e.sn=0form=1L,...,.K—1.S0
K-1 L}
exv — O _emn8km(2) = exn = Y _emngm(z) =0
m=1 m=1
implies exy = 0, eny =0 for m=1,...,L — 1 by the linear independence of

{1,8xi,---,8kw-1n}. Hence we obtain ey =0 for i=1,2,...,K, exy =0,
exx =ewy, ex =0fori=1,2,...,K — 1. Then Eq. (3.3) becomes

v(2)=e; i,j=12,...,K-1,

(3.11)

e ) g
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Eq. (3.4) becomes

X .
ex; + exx8ki(2) = ng,,,(z)v,,,j(z), 1<j<K-1, (3.12) . = e

m=1

Eq. (3.5) becomes

en; + envgni(z) = ZgN,,,(z)v,,,j(z) = EgNm(Z)Umj(Z)’

m=L

1<j<K- 1L (3.13)

Plugging Eq. (3.11) into Eq. (3.13) we get eyy = e;; = v;,v;;(z) = e;; =0 for
i=L,...,K, j=1,2,...,K -1, i # j. In this case Eq. (3.12) becomes

L-1 K
ex; + exxgx;(z) = Zg,(,,,(z)e,,,,- + ngm (2)em;-
m=1 m=L
This means that e¢; =0 if i=1,...,.L -1, j=1,2,...,K—1, i #j. This
proves that E = e 1/x41, V(2) = enlx. . _
We now prove the necessity. If G(z) is AR, it is obvious that we require RN
GCD(gnk,gxkx) = | and {1,gx1,...,8kz-1} are linearly independent. Now if
W N W, # {0}, Eq. (3.10) implies that we can find non-trivial solution, i.e.,
there exists ex # 0 for some 1 <i<L — 1. Hence we conclude that V' (z) # alk.
This contradicts with the AR property of G(z). O

Remark 4. In Theorem 5, if ggx(z) =1 and gk;(z) =0 for 1 <j<K -1, it is
exactly Theorem 4.

By Theorem 5, we can also see that if the field F is the complex field C, and
the degree of the polynomial matrix of size (K + 1) x K to be bounded by some
integer M, then the set of (K + 1) x K polynomial matrices that are not AR has
measure 0 in the finite dimensional linear space consisting of all (K +1) x K
polynomial matrices whose degrees are bounded by M. This means that a
randomly generated polynomial matrix is AR with probability 1. Hence we
have the following result which confirms the conjecture made in Ref. [10].

Corollary 1. A randomly generated (K + 1) x K polynomial matrix over the i
complex field C is almost surely AR S

The following corollary gives an intuitive construction of a family of AR P
matrices. o

B e et
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Corollary 2. If gni(z) = =gne-1)(2) =0, 1<deggm < --- < deg gnx,
GCD(gKK)gNK) = 1: {11gK1 y8K2y -0 7gK(L—l)1gNL7 nee ygN(K—l)} are Iinearly in-
dependent over F and if deg gnx > deg gxj for 1 <j<L — 1, then G(z) is AR.

D -
Proof. Let

' W, = span{gnk, gxkgx1, - - - » ENKEK(K-1) }5

W, = span{gxk, gkxgx1, - - - » BKKEK(L~1)> 8KKENL; - - - » EKKEN(K—1) } -
& We only need to prove W, N W, = {0}. Now let

K-1 L-1 K-1
Z“jgNKng = ZﬁngKng + Eﬂ;gmgzvj
i=1 j=t

=L
ie.,
o o K-1 L-1 K-1
8Nk Zajgl(j = 8kk Zﬁjng + Zﬂjng
j=1 J=1 Jj=L

By GCD(gk«,gnk) = | we get

-1 K-1
8gnk Zﬂjgkj + ZﬁjgNj

j=1 Jj=L

So deg gwx > deg gk; and deg gy, < -+ < deg gnx induce

L-1 K-1
D> Bigx+ D _Bian =0
P L

and hence Wi NW, = {0}. O

< It is natural to ask the following question: if G(z) of size N x K (N > K) is
¥ AR, H(z) is an M x K polynomial matrix, is polynomial matrix

el

AR? The following example provides a negative answer to this question.

. Example 1. Let

1 0
Giz)=1{0 1
z 2

By Theorem 4 we see that G(z) is AR. Let
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1 0
= 0 1
G(z) =
@=1, »
0 z
We can easily check that
1 0 -1 031 O 1 0
110.101_01[1—-z—zz]
00 1 Oflz 2| |z 2L 1 1+z
00 1 1]JL0 =z 0 z

Hence G(z) is not AR.
However, we have the following property [6].

Proposition 2. If an M x K polynomial matrix A(z) is AR-equivalent to

G(z)
]
and G(z) is AR, then A(z) is AR

Proof."'We only need to prove that if G(z) is AR of size N x K, then
'G(Z)]

0

is AR. By equation

HEGEG

] V(z)

we get EG(z) = G(z)V(2), so G(z) is AR concludes V(z) = alx for some

nonzero constant a. [

In Section 3 we completely characterized (K + 1) x K AR matrix. However,
the sufficient conditions for general N x K polynomial matrices to be AR are
not yet clear. Another interesting question is, if G(z) isan N x K (N > K +1)

AR matrix, can we always find an ambiguity resistant (K + 1) x K submatrix

H(z) among the AR-equivalence class of G(z)?
Finally, as pointed out by one of the referees, some of the results in this

paper also apply to finite fields. For instance, let us consider Lemma 3. Since -

the degrees of f; for 1 <i<L are bounded, using a simple non-topological
counting argument, Lemma 3 is also true for a sufficiently large finite field.
Since Lemma 3 plays a main role in the proof of Theorems 2 and 3, we believe

R e et e
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that if the degrees of polynomial matrices are bounded and the matrix size is
fixed, Theorems 2 and 3 is also true for a sufficiently large finite field. Never-
theless, we think that the results in Theorems 2-5 may not hold for general
finite fields when there is no restriction on polynomial matrices.
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which compeltes the derivation with Y¢L,,) = N...J -
L. L L D' o+ ‘::I’;;ilni»

Equation 14y indicates that the error made in approximating the
22 block in L s proportional to - L. .1 however, T is a funchion
of L._ through « and the |-norms of .. and I - L .L; L._D".
To partially examine the behavior of T. we argue that decreasing
A L. ina natural manner decreases this quantity as well. Assume
that € i~ fixed and that \ is decreased by decresing the value of
the » parameter in the prior model. specifically for the coefficients
in the 22 block. Now. it is not hard to show that D™' = 0 so that
with B = L L[ L.

W -BD™'|,=|I-BD™'+D' -D7'|,
< -D7 'L+ D" - BD™'|),
< -D™'|),
x—0

+ D7 = Bl = |ifll = 1.

Hence. asymptotically. {I = BD ™|, is independent of L:.. Re-
fermng to (8b). it is not difficult to show that as ~ decreases,
.. — &°P. ;.. where Py . is the 22 block of the appropriately
permuted form of P,,. Therefore, as » — 0, both a and || P..{}, go
to 0 Thus. we conclude that decresing M L) by varying the degree
of regulanzation will cause T — 0.
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Efficient Implementation of Arbitrary-Length
Cosine-Modulated Filter Bank

Xig1 Gao. Zhenya He. and Xiang-Gen Xia

Abstract— The fast implementation of arbitrary-length cosine-
modulated filter bank is investigated. By using the linear phase property
of the prototype filter, a more efficient implementation structure is
obtained for the filter bank. In the new implementation. 2 x 2 lossless
lattices are used instead of 2 x I ones in the traditional implementation
with the number reduced by half.

I. INTRODUCTION

The cosine-modulated filter bank (CMFB) has received much inter-
est in recent years [1]-{6]. It has two remarkable features: easy design
and fast implementation. While the design of CMFB’s has been
addressed by many researchers, we deal with the implementation of
paraunitary CMFB's in this correspondence. Typically, the polyphase
component matrix of a paraunitary CMFB can be expressed as the
product of a modulation part and a polyphase part in terms of the
polyphase components of the prototype filter. Based on such an
expression, the CMFB can be implemented through two-channel
lossless lattices and fast discrete cosine/sine transform (DCT/DST)
algorithms (see. for example. [1] and [4]). Two-channel lattices are
often used for an M/ channel CMFB. Notice that only half the number
of the lattices are required in the implementation of Malvar's CMFB.
which is called extended lapped transform (ELT) [2). The motivation
of this correspondence is to generalize the above Malvar's result to
other paraunitary CMFB’s. The arbitrary-length CMFB developed by
Nguyen and Koilpillai in [3] is considered in this correspondence.

This correspondence is organized as follows. In Section I1, we first
review the arbitrary-length CMFB briefly. Then, we show that the
four filters in two related pairs of power complementary polyphase
components of the prototype filter form a 2 x 2 paraunitary system
due to the prototype filter symmetry. In Section III. a new expression
of the polyphase component matrix of the CMFB is developed. Based
on it. a more efficient implementation structure is obtained by using
the 2 x 2 lossless lattices instead of the 2 x | ones in the traditional
implementation. The implementation complexity of the CMFB ‘is
discussed in Section [V.

Notations: Capital and lower case letiers are used to denote the
transfer functions and the impulse responses of filters, respectively.
Bold lenters indicate vectors and matrices. The functions [r] and
{ 7] round the value of r to the nearest integers toward infinity and
minus infinity, respectively. C\' and C% stand for the standard
DCT matrices as defined in {8]. O stands for matrix whose entries
are all zeros. I'v and J v are the N x N identity and reverse identity
matrices, respectively.
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1. THE ARBITRARY-LENGTH CMFB

A. A Review of The Arbitrary-Length CMFB

A typical M -channel maximally decimated filter bank is shown
in Fig. 1. where Hi(z) and Fi(z)(0 < k < M — 1) are the
transfer functions of the analysis and synthesis filters. respectively.
At the analysis side. the input signal (1) is decomposed into M
subband signals through the bank of analysis filters followed by M-
fold decimators. At the synthesis side. V/ subband signals are passed
through }/-fold interpolators and recombined into the reconstructed
signal 7 v by using the bank of synthesis filters.

Let b n: denote the impulse response of a linear-phase low-pass
prototype filter with length N = 2mo M + m,. where mo and m,
are integers and 0 < nry € 2M — 1. The M <channel arbitrary-length
CMFB 15 detined as {3]

aik 3 N - b
hoto :1)1!!/1(‘()~( ‘L;’[U ))(H— 5 1)+(—1)‘})

(la)
ik +0.5 N - ¥
f. n :;',)(Il'('()\< “.T[O )‘(n— 3 ]) —(—1)‘:)
(Ib)

where . n and fimr0 € K € M-10< n & N-1L
are the impulse responses of the kth analysis and synthesis filters.
respectively The CMFB is exactly the one investigated in [1] with
the length extended to arbitrary integer value.

Suppose that the impulse response of the lowpass prototype filter
1s ssmmetry: then, fitn) is the time-reversed and shifted version
of h. 1. This relanon means that the CMFB is paraunitary if and
only 1if 1t has perfect reconstruction property [9]. Let Ge(:).k =
0.1.---.2M =1 denote the type-1 polyphase components of the
prototype filter [9] Due to the symmetry property of hin). Ge(2)
satisfies

H :ml Ty =1 — <) <m; -
G‘l:)z{ Gy —1-kl2) :; =1 2)

z Gl.\l+m|-l—k(:)-

where Gii:) = Gu(:""). It has been shown in {3} that the necessary
and sufficient condition on the polyphase components for perfect
reconstruction is

Git )G (2) + Gareel )G aail=)
1

=57 0<k<M-1. 3)

This means that appropriate pairs of the polyphase filters are power
complementary. Depending on the lengths of the two filters Gil:2)
and Gy .i(z) and the relationship between them, four classes of
power complementary pairs can be distinguished in the general case
for arbitrary length prototype filters. The condition given by (3) can
be satisfied by the four different modes, as discussed in [3). In modes
a and c. the two filters have the same length. If they are related by (2).
they are under mode c: otherwise. they are under mode a. In mode c,

H1R9

both of the two filters must be delavs. In mode b and /. Gyt and
G r.ut:: have different lengths. If they are related to themselves
by (2). they are under mode J: otherwise. they are under mode b. In
maode 1. one of the two filters must be a delay. and all coefticients
of the other one must be zeros.

B Lattice Structure for a Power Complementary
Patr and Its Related One

The power complementary filter pair Gt and & roilssal-
isfving (3) can be completely factored as the two-channel lossless

lattice
—1 Gl
v2M
[G'.I-wk(”]
=Rk..n.\f:)R‘-,n.-n\i:)-~-RA...\(:)[P"O] (4)
Sk0
where

_eea sk |t 0

L= cosBg s = s, I=0.1.2.---.m

and i depends on the lengths of the two filters. For the case
N = 2m )M, all the polyphase components have the same length. and
there is no restriction on any angle parameter 6 ;. For the general
case when the prototype filter has arbitrary length. there are different
constraints on the angles of the lossless lattices corresponding to the
four modes (see [3] for details).

For each power complementary filter pair, we can find a related
one due to the prototype filter symmetry of (2). The four filters in
the two pairs define a 2 x 2 system. We define the following three
types of 2 x 2 systems in terms of different m, and k:

. Gil(32) G _i-kl2)
LV 2 o] Gk Mem -1k
L= =27 Gareklz2) Gmy—1-kl2)

my <M., k<m -1 or

my>M., - M<E<M-1 (5a)

L) 2 N[ Gil(z)  Garemy—1-4l3) }

Garvilz) =Garfamy—1-k(z)
m <M., m<k<M-1 (5b)
L'V 2 Vo Gi(z)  Gmy=rr-1-l2)
w2 ! Gra+x(z) —=Gmy-1-4l2)
i mi>M. k<m -M-1 (5¢)

L\" is for the polyphase filters under mode b and mode d. L\*'
and Lm are for the polyphase filters under mode a and mode c. It is
easy to show that these systems are paraumtary and can be expressed
as the following 2 x 2 lattices:

0
[ ) O}kao 1A - R Ad(2)

2! 0 T
L'(s)= R""’L 0 (—1)"'°] bem =3 (6a)
.\(—:) k.mo-\(:)v’REQ.\(:)Rk,l
1 0
0 (=1)mo+h | 8x0=0.
L) = Ri.mg-1 M(2) R mg—2A()
1 0
- Rie 1 A(2)Ri o [0 (—1)"‘°] (6b)
L(2) = Rimo A=) Ric.mo—1.A(2)
1 o
<R A(2)Rro [0 (=1)mo+! ] (6¢)
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In mode « and mode d. the corresponding lattices are trivial.

In practice. a two-channel lossless lattice can be implemented by
using the two-multiplier structure for each section [2]. [9). A 2 x |
lossless lattice with 1n free angle parameters and others set to be zero
or m/2 can be infplememed by using 2/ multipliers and 210 — 1)
adders. For the comresponding 2 x 2 system, both the two numbers
are 2m + 1. For L, and L,’". there are m free angle parameters.
.md hence 2mg + 1 multipliers and 2., + 1 adders are required. For
L . there are my + 1 free angle parameters. and hence. 2, + 3
muluphers and 2mq + 3 adders are required.

[I. FAST IMPLEMENTATION OF THE ARBITRARY-LENGTH CMFB

Now, we consider the implementation of the CMFB. Considering
the relationship between the synthesis bank and the analysis bank of
the paraunitary filter bank. we only deal with the latter. The polyphase
component matrix of the analysis bank can be expressed as {3}

Em:(’:[ _9.0“(__’ ] )
:7lg (==
where
L 7tk + 0.3 N1 ;
‘C':‘,=‘2ro>(-r :.[ o)(l— 3 )+(—l)k})
g, 21 =diaglGa(:) Gy(:2) Gy-1(z)). and
g,/ : =diagtGutz) Garsrlz) Garr—i(2)).

Based on (7) and the power complementary condition in (3) for
perfect reconstruction. the filter bank can be implemented through
a parallel bank of 2 x 1 lossless lattices cascaded by the modulation
matnx The number of the 2 x 1 lattices is equal to the number
of subchannels M. The modulation part can be implemented by
fast DCT algonthm. Such an implementation structure has been
widely used in the CMFB's with N = 2m ) [1), [4]. The linear-
phase property of the prototype filter is not exploited to reduce the
complexity.

Letm, + M -1 =2y -1,, where I is an integer. and I, € {0.1}.
If 1, is equal to zero, one of m; and M is odd. and the other even.
If 1, 15 equal to one. both m, and M are odd or even. By using the
properuies of cosine function, the modulation matrix can be expressed
as

V23 DC[A_\Q - B\, A\ + B\o] 8)
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where D is an M x M diagonal matrix with the Ath diagonal

component ¢ = (~1)-*/% and
5 o
c'. =0 V2 S L=0
C= {Cl\ l| 1 A= 0 I, l
r= TR L, =1
B:{ o J,I =0
1|=1
° "' " lh< M
‘\()2
o>}
Ilo-\l o> M
- I,O 0. o< M
T (0 Iy,
0 0 . o> M.

Substituting (8) into (7), we obtain the following expression of
E(:):

E(:) = DCG(=) 9)
where
G(:) =V2M[(A\o - BA))gy(~2?)
=Y (AN + BAolg, (-:2). (10)

Based on this new expression, the analysis bank can be imple-
mented more efficiently. The implementation structure is shown in
Fig. 2. The diagonal matrix D only changes the signs of the output
subband signals. The matrix C is the type [0 DCT and type IV
DCT for I; to be zero and one, respectively. It can be shown that
the M x M matrix Gi:) can be implemented through a parallel
bank of 2 x 2 lossless lattices that are related to L ' and some
delays. To give the explicit formula of G(:) and see this clearly,
eight cases can be distinguished in terms of lo. 1, and m;, as shown
in Table I. In Table I, we give the numbers of the 2 x 2 lattices used
in the implementation of G z) for the eight different cases. Here, we
consider Case 2 as an example. In this case, 1 < m; < M —1. G(3)
takes the form of (11), shown at the bottom of the page, where G,
stands for V2MGi(-:?). G(=) can be implemented in paralle]
through the following:

i) a delay 2VMG (-:? ) and another

\/‘_7—\-[0(,,,‘_“/2(—- )+ =

M is even;

possible delay
G\r+(m,-n/z(—' )] when
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x(n} % (m)
“0 ™) 0 -
z”! x.(m)
: # el Lo #1 .
z-! G(z) C D
n ' ' Xy ()
z 1L’@—’#M—l #M-1 #M-1 e

Fig 2

2o(m)

#0 —a
X, (m)

# —p

D |:

Xy o(m)

#M-2 —*
X (M)

#M-1 —

New implementation structure of the M ~liannel CMFB. (a) For general case with arbitrary length. (b) For special case with \' = 2m )M, which

cover Case 1 and Cace S Here. G :) can be implemented in parallel through a bank of 2 x 2 lossless lattices in addition to some delays. C is the standard
DCT (nype [11 or type V). and D is a diagona! matrix and only affects the signs of the outputs. In (b). @ is equal to V2. -

ii) a set of 2 x 2 parauinary systems

— G- Grom,—1-k(=2)

iy =v2\ _ & .
Livav=v2aM T Gyt =) - lei\Hml_\_k(-—:z)
=ArnL =2 (12)

where my < k < (M +m - 3)/2:
iii) another set of 2 x 2 parauintary systems [see (13) at the bottom
of the pagel.
where 0 < k < |m, /2] = 1. Two types of the 2 x 2 paraunitary
svstems defined in Section 1 are used in the parallel implementation.
The total numbers of the 2 x 2 paraunitary systems aré (M-m, -
1)/2 and |m /2], respectively.

- [V. IMPLEMENTATION COMPLEXITY

In the previous section, we have shown that the CMFB can be
implemented through a parallel bank of 2 X 2 lossless lattices
and some delays followed by the standard DCT. For the DCT's,
fast algorithms are available [7]. {8). All the lattices are related to

L}".i = 1.2.3 without additional multipliers and adders required for
the implementation. From Table 1. it is obvious that the total number
is less than or equal to M /2 for each case. The implementation cost
of the CMFB is that of about M/2 2 x 2 lattices plus one .M -point
DCT matrix working at an M-fold decimated rate.

In the traditional implementation structure of an M <hannel
CMFB. the number of the 2 x 1 lattices is M. Ignoring the trivial
lattices. which are under mode ¢ and mode d, the number is exactly
twice as that in the new implementation structure. Since only one
additional multiplier and three additional adders are required to
implement the corresponding 2 X 2 lattice of a 2 x 1 one, the
complexity of implementing a set of 2 x 2 lattices is lower than
that of doubled 2 x 1 ones. When the section numbers are large.
the complexities of the two type latices are approached, and hence,
the cost can be saved nearly one half to implement a set of 2 x 2
lattices instead of doubled 2 x 1 lattices.

As an example, we consider Case 5. with M = 2™ to see
the efficiency of the new implemén(ation structure. In this case,

Gm;—l—k(’:'Z

_ T 1Garan(=37)
Lk(~)—V2-\![ Gil-:?)

-\("3)RLMo—I-\("::)R‘-'uo—‘-’-\(-32)'"Rk.x-\(-:z)Rk.o :() (—l)mo+l]' Ok.mo =
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[0 0 ]Rk'm"'\(-::m‘"m°"'\(_: ) RiaM=:" R | (—I)MO-H;—‘].
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TABLE )

NUMBERS OF LATTICES IS THE NEW IMPLEMENTATION STRUCTURF

Case Number of lattices
L»'h L:.:; L.)-
1. 6,20, L,<A and m, =0 0 (M2 0
2). 1.=0.ly<M and m, =0 m2] (M-mp 2 0
3 1 =0. =M LM-1yi2] 0 0
4.1 =0, l;>M V- m 2] 0 Am - M-1/2
) h=t. l<Mand m, =0 0 LMi2] 0o
6). L,=1. ly<M and m, 20 m.i2] AM-m)2; 0
N L=l =M HM-n2] 0 0
8). L=l ly>M M{m /2] 0 [(m - M-1)/2
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ney s equal 1o zero. M/2 lattices L,*’(:). and type IV DCT are
used. By using the fast algorithm presented in (8], (M/2)log, M +
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multiplications and additions per input sample (MPIS and APIS)
versus mo with M = 16. It can be seen that by using the new
implementation structure, the saving of operations becomes more
significant as wr, increases.

V. CONCLUSION

A more efficient implementation structure for a class of paraunitary
CMFB with arbitrary length has been developed in this correspon-
dence. The linear-phase property of the prototype filter is exploited
1o reduce the implementation cost. The new implementation structure
uses 2 x 2 lossless lattices instead of 2 x 1 ones with the total number
of lantices reduced by half. The implementation costs are significantly
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Abstract

A quantitative analysis is given for the signal-to-noise ratio (SNR) in the short-time Fourier
transform domain for multicomponent signals in additive white noise. It is shown that the SNR is
increased on the order of O(N/K) where K is the number of components of a signal, N/T is the
sampling rate, and T is the window size. The SNR increase rate is optimal for given K. For this
result, the SNR definition is generalized, which is suitable for signals not only in the time domain
but also in other domains. This theory is illustrated by one numerical example.

1 Introduction

Time-frequency analysis [11-12] has become an important technique in analyzing wideband/ nonstatic;nary
signals in various applications including inverse synthetic aperture radar (ISAR) imaging [1], biomedi-
cal signal analysis [2-3], speech signal analysis [4], and FM radio communications [5]. One of the most
important features of this technique is that it usually increases the signal-to-noise ratio (SNR) in the
joint time-frequency (TF) domain. This is particularly advantageous for signals which are difficult to
detect in the time or frequency domain alone. The reason for this important feature can be stated
as follows. A joint TF transform usually spreads noise from one dimension (the time or frequency)
into two dimensions (the joint time and frequency) while it usually concentrates a signal in localized
regions in the TF plane. A number of research results on the estimation of time-varying frequencies
have appeared, such as [5-7] with Wigner-Ville distributions. However, to the author’s best knowledge,
there does not exist a quantitative analysis for the SNR increase for any joint time-frequency transform,
which is certainly an important issue in practical applications in signal detection by using thresholding.
In the conventional SNR definition, the mean power is taken over the whole domain of a signal. If
the signal is stationary in this domain, this definition works fine. However, if the signal is not stationary
in this domain, such as a single tone signal in the frequency domain, this definition is no longer suitable.
In this correspondence, we first generalize the SNR definition so that it is not only suitable for signals in
the time domain but also in other domains, such as the frequency domain and the joint time-frequency

*Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716. Email:
xxia@ee.udel.edu. Phone: (302)831-8038. Fax: (302)831-4316. This work was partially supported by an initiative grant
from the Department of Electrical and Computer Engineering, University of Delaware, the Air Force Office of Scientific
Research (AFOSR) under Grant No. F49620-97-1-0253, and the National Science Foundation CAREER Program under
Grant MIP-9703377.




domain. We then present a quantitative analysis of the SNR increase rate in the joint time-frequency
domain for the short-time Fourier transform with rectangular windows, where multicomponent signals
in additive white noise are considered. The main result can be stated as follows. Let K be the number
of monocomponents in a signal, T be the window size for the short-time Fourier transform, and N/T
be the sampling rate. N point discrete Fourier transform is performed in each window. Then, the SNR
in the joint time-frequency domain is increased on the order of O(N/K), when the window size T is
small enough.

This correspondence is organized as follows. In Section 2, we formulate a proper definition for SNR
in different domains. In Section 3, we present the proposed quantitative approach to analyze the SNR
increase rate in the joint time-frequency domain. A numerical example is presented in Section 4 to

illustrate the proposed approach.

2 Signal-to-Noise Ratio in Different Domains

The conventional signal-to-noise ratio (SNR) is defined as the ratio of the mean power of the signal over
the mean power of the noise, where the mean is taken over the whole time domain. It is formulated as

follows. Let y[n] be a distorted signal:
yln] =z[n]+nn], 0<n <N -1, . (2.1)
where r[n] is a signal and n[n] is an additive white noise with variance o%. The SNR is defined as:

SN lalnl? 22

SNR = &= 0

This SNR is used quite often in describing the noise level relative to the signal, and in distinguishing
the signal from noise in stationary environments. When the SNR is too low, in general it is impossible
to distinguish the signal z[n] from y[n]. However, for some special kinds of signals z[n], such as narrow
band signals, it is possible to detect the signal in the Fourier transform domain even when the SNR is’
of negative dB. An example is shown in Fig. 1, where the SNR= —11dB and the signal z is a single
tone signal.

According to the SNR definition in (2.2), an orthogonal transform does not change the SNR, i.e.,
the SNR in the transform domain is exactly equal to the SNR in the time domain. This is because
of the energy preservation property of orthogonal transforms. This implies that the SNR of the signal
in the frequency domain in Fig. 1(b) is still ~11dB. However, one can clearly see the signal in the
frequency domain. This suggests that the SNR definition in (2.2) is not proper to judge the possibility
of detecting the signal in the frequency domain in Fig. 1(b). It should not be surprising since the signal
in Fig. 1(b) is not stationary and the mean power over the whole frequency domain is, of course, not
proper to the signal with a single spike.

The above observation suggests that the SNR definition is transform domain dependent a.nd should
relate to the bandwidth of a signal occupied in that domain. We now introduce the following SNR

definition in a domain.




Suppose the expression (2.1) is already in a transform domain, where n is the discrete variable in the
transform donrain. Assume the additive white noise n[n] in (2.1) occupies the full band in the transform
domain. For the signal z[n] of length N, 0 <n < N —1, let

A . _ 2 2
B={n: 0<n<N-1and|z[n)|*>0.5 0% |z[n]|*}, (2-3)

where the number 0.5 comes from the common 3dB bandwidth definition in communications. Then,

the SNR is defined as | [ ”2
NR _A ZnGB zn : 2.4
S IBl 2 ) ( )

where |B| denotes the cardinality of the set B. Notice that this definition is similar to the SNR definition
in communications, where the signal is only considered in its bandwidth.

One can clearly see that the SNR in (2.4) is always greater than or equal to the SNR in (2.2)
because the mean in (2.4) is only taken over the first large values in the whole domain. With the SNR
definition in (2.4), the SNR in the time domain for the signal in Fig. 1(a) is —8.4dB but the SNR in
the frequency domain for the signal in Fig. 1(b) is 16.3dB. Although about 2.6dB SNR is increased
over the original definition in {2.2), the SNR in the frequency domain is significantly better than the
old SNR, that is —11dB, in describing the signal characteristics over the noise. The time domain SNR

increase is consistent for relatively stationary signals without dramatic jumpings in the time domain.

3 Signal-to-Noise Ratio in the Joint Time-Frequency Domain

In this section, we analyze the SNR in the joint time-frequency domain for the short-time Fourier
transform, where the SNR defined in (2.4) is used. In order to do so, we first describe a multicomponent

signal model.

3.1 Multicomponent Signal Model

Throughout the rest of this paper, we use the following multicomponent signal model,

K
y(t) = Y zk(t) +n(t), 0 <t < Ty, (3.1)
k=1 '

where we have the following assumptions
(i) t is the continuous-time variable and limited in the finite observation interval [0, Tp].

(ii) n(t) is an additive white noise process with mean 0 and variance o2. It is not differentiable at any
time t € [0, Tp} and independent of zx(t), 1 < k < K.

(iii) For each k, 1 < k < K, zx(t) is a monocomponent time-varying signal, i.e.,
2k(t) = Ax(t)ei®), (3.2)

where Ag(t) is the slowly varying amplitude envelope of zx(t), and ¢x(t) is the phase of z(t).
The magnitude of the first order derivative A'k(t) is upper bounded by Ay, ie., |A;(t)| < A;
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for a positive constant Ag, and the magnitude of the second order derivative ¢',: (t) is also upper
bounded by ¢, i.e., |¢Z (t)| < ¢y for a positive constant ¢ for all ¢ € [0, Tp)-

(iv) The K instantaneous frequencies ¢, (1), 1 < k < K, are distinct.

Additional details on multicomponent signals can be found in [8]. It can be easily shown that the
process y(t) in (3.1) has locally stationary behavior [9-10] in the following sense

|Ryy(t + u, s +u) — Ryy(t, 8)| < Clul, (3.3)

for a positive constant C, where Ry, denotes the autocorrelation function of y(t).
As a remark, the nondifferentiability assumption (ii) of n(t) makes sense. An example of such
processes is the Wiener process, see for example [13]. This assumption implies that any sampled

segment of 7(t) in any time interval is a white noise and has flat Fourier spectrum.

3.2 Short-Time Fourier Transform for Multicomponent Signals and SNR Calcula-
tions

For each monocomponent signal zx(t) in (3.1), by (i)-(iii) it can be shown that there exists € > 0 such

that, for any s € (ex,To — €k)»
2k(s + 1) & Ag(s)TOEHADD, € e e,

where the linear term A;C(s)t of t does not appear because of the “slowly varying” assumption in (iii) on
the amplitude envelope Ag(t). Since we have only finite many monocomponent signals zx(t) in (3.1),
there exists € = min{ex, 1 < k < K} > 0 such that, for any s € (e,To —€) and any k, 1 <k < K,

2k (s + 1) = Ap(s)d @O ¢ e [—e ¢, (3.4)

where € depends on the constants Tp, A, ¢k, 1 < k<K.
With (3.4). at each time s € (¢, Tp — €) we apply N point discrete Fourier transform (DFT) for the
signal y(t) for t € (s — %,3 + %] with the sampling rate N/T for T = 2e. For convenience, we assume

N is even. The DFT is

1 N/2 T omil
VN q=_N/2+1y(( q)N)e v, 0sls L, (3.5)

where m is in the range such that (m — N/2 +1)T/N >0 and (m + N/2)T/N < Ty, ie.,

N-=-2 To 1
< < (— — = .
5 _m__(T 2)N

Pym,l]

The above P, can be decomposed into

<m<(F -3, (3.6)

K
P,fm, 0] =Y PrIm, ] + Py[m,1]}, 0<SI< N -1,
k=1




where Py, [m,l] and P,[m, ] are defined for zx(t) and n(t):

N/2

1 T, _zmjql
P [mvl] = T Z zk((m+q)—)e_ N, 0<I<N-1, (37)
* Nq::—N/2+1 N
Pylm, 1) = — %,‘2 ((m+q))e F, 0<I< N -1 (3.8)
m,ll = — m —)e N, 0<I<N-1, .
1 qu_N/2+l77 q N

Since 7)(t) is a white noise process, for each m the Fourier spectrum E(|P,[m, []|?) are flat over the whole
frequency domain 0 <! < N — 1 as mentioned in Section 3.1. This implies that, the mean power of the
noise spectrum P,[m, (] is also 02, which is the same as in the time domain.
We next want to study the mean power of P;, [m,!] for the signal. Using (3.4),
1 & T )ej{m(m%)w;(m%)(mﬂ)%—%’—‘}

P [m,]] = i > Ak(m-ﬁ

g=—N/2+1

. ’ N/2 /
eJ{d’k(m%)%—q&k(m%)m%} i ejqﬂ (mﬁ)T—zwt.

N

1 T
= —=Ar(m=)
\/N N g=—N/2+1

Therefore,

(Prylm, 1] % | Ax(m =) VNG (z - ﬁ%@) . (39)

By the assumption of distinct instantaneous frequencies ¢'k(m§) for 1 < k < K, the Fourier power
spectrum | Py, [m,1]|? are located at K different frequencies ¢Ik (m%)T/ (27), 1 < k < K. This implies

K 2 K LT 2
T ¢ (my)T
Yo IP,[m 0| ~ N Y Ax(m=)s (l ——
k=1 k=1 N 2m
K 2 Y
N T ¢ (my)T
~ Nlc};l Ak(mN)! k) (1 o . (3.10)
Therefore, for each fixed time s = m%, in the frequency domain,
K 2 . K T 2
o JEBX | k}::lthk[m,lJ > Nkizjl Ae(m=) (3.11)
Now, let us come back to the time domain signal y(m%). The noise mean power is o2. The signal
power at each time ¢ = m% is '
K 2 K 2 K 2
T T T
—) < — < =) . .
> an(my)| < (kgl Ak(mN)l) <KL An(my) (3.12)

By comparing (3.11) with (3.12), it is clear that the following relationship between the SNR;s in the

joint time-frequency domain of (3.6) and the SNR; in the time domain of (3.1) at the sampling points
T

mw—:

SNR;s N
2N S 05—
SNR, > 0 5K ) (3.13)




where 0.5 comes from the SNR definition in (2.3)-(3.4). Therefore, as the window size T is small enough
SNRy; (N)
—l > —=1. 3.14
SNR; — 0 K (3-14)

Notice that the assumption of small enough window size T is equivalent to the assumption of fast enough
sampling rate N/T. The derivation of (3.14) implies the following theorem.

Theorem 1 For a multicomponent signal with K many monocomponents, the SNR in the joint time-
frequency domain with the short-time Fourier transform with the rectangular window of size T, and
the sampling rate N/T, increases over the SNR in the time domain on the order of O(N/K) when the
sampling rate is fast enough. Given the number K, this increase rate O(N/K) is optimal.

Proof: The first part has been proved by the above argument. The optimality can be proved by taking
Ai(t) =1 and ¢ (t) = cit2 for proper constants cx # 0 for 1 < k < K, and noticing that the inequalities

in (3.9)-(3.12) become equalities in this case. D
4 Numerical Example
For simplicity in computations, we choose the following two-component signal model
y(t) = e + ™ 4 (1), 0K <2, (4.2)

where 7(t) is an additive white Gaussian noise with mean 0 and variance o2 = 9. The window size for
the short-time Fourier transform is 1/8. The following constant of the SNR increase rate in terms of

the number of points N of the DFT is illustrated in Fig. 2:

SNR¢y / N
SNR; / K’ (4.2)
One can see that, for this particular signal,
SNR;y N
SNR, - 0.55?{—, as N — oo. (4.3)

From Fig. 2, one can also see that the constants of the SNR increase rate have large variance when the

sampling rate is not large enough but almost become invariant when the sampling rate becomes large.

5 Conclusion

In this paper, we have quantitatively analyzed the SNR increase rate in the joint time-frequency domain
with the short-time Fourier transform over the SNR in the time domain for multicomponent signals in
additive white noise. We have shown that the rate of the SNR increase is on the order of O(N/K), where
K is the number of monocomponents in a signal, N/T is the sampling rate and T is the window size in
the short-time Fourier transform. Although we have presented quantitative analysis for the short-time
Fourier transform with rectangular window functions, we believe that the result also holds for Gaussian

window functions.
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Figure Captions

Fig. 1 : Single tone signal.

Fig. 2 : SNR increase rate.
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Convergence of An Iterative Time-Variant Filtering Based on

Discrete Gabor Transform

Xiang-Gen Xia* Shie Qiant

Abstract

An iterative time-variant filtering based on discrete Gabor transform (DGT) has been re-
cently proposed by the authors. In this paper, we present a proof of the convergence of the
iterative algorithm under a sufficient condition on the analysis and synthesis window functions
of the DGT. In the meanwhile, we show that the iterative algorithm refines the least squares
solution.

1 Introduction

Time-frequency (TF) transforms (or analysis) add redundancy in the joint TF domain to the
signal in the time domain. They spread noise over the whole TF plane and meanwhile contain the
signal information in some localized areas as shown in Fig. 1(a)-(c). Therefore, TF transforms
usually significantly increase the signal-to-noise ratio in the TF domain, see for example [19] for a
quantitative analysis. In other words, signals in the TF domain may be easier to be detected than
in the time domain alone. With this observation, one might use the following idea for extracting
the signal in the time domain analogous to traditional linear filtering: take the TF transform of a
noisy signal s(t); mask the TF transform in the TF plane as shown in Fig. 1(d); take the inverse
TF transform of the masked TF transform shown in Fig. 1 (d) as §(¢). With traditional linear
filtering, there is no question about that the Fourier spectrum of the filtered signal 5(t) has the
desired frequency band. This is because the Fourier transform is a one-to-one and onto mapping
for finite energy signals. Any signal in the frequency domain corresponds to a unique signal in the
time domain. This is, however, no longer true in general for TF transforms. Not every signal in
the joint time-frequency domain corresponds to a signal in the time domain due to the fact that

TF transforms are redundant and not onto. This implies that the TF transform of the filtered 3(t)
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may not fall in the masked domain as shown in Fig. 1 (d)-(e). With this observation, let us state
the general time-frequency synthesis problem (also known as the problem of filtering, time-varying,
nonstationary wideband signals). Given a user specified, localized time-frequency domain in the
TF plane, find the corresponding time domain waveform. The traditional approach to this problem
is the least squares solution method, which finds the signal in the time domain that minimizes
the squared error between the signal’s TF transform and the desired one (see, for example, [1] for
ambiguity functions, [2-4] for TF transforms). For other approaches, see, for example, [5]. There
are two drawbacks to the least squares solution method. The first one is that although the error
between the TF transform of the solution and the desired one is minimized in the mean squared
error sense, the TF transform of the solution is not guaranteed to have the desired time-frequency
characteristics. This means the solution may not be the desired one as illustrated later by examples.
As a result, the performance is limited, which will be seen from our numerical results later. The
second drawback is the computational complexity when signals are fairly long, which is quite often
the case in practice. This is because the calculation of the pseudo inverses of the matrices needed for
the least squares solution method is computationally expensive when their sizes are large. Recently,
an iterative time-variant filtering method based on discrete Gabor transform has been proposed by

the authors, see for example [6, 7, 18].

In this paper, we present a proof of the convergence of the iterative algorithm proposed in [6, 7]
under a sufficient condition on the window functions of discrete Gabor transforms. We also prove
that. under these conditions, the first iteration of the iterative algorithm is exactly the least squares
solution. Improvement over the least squares solution occurs with more iterations, which can be
seen clearly from our numerical examples. This paper is organized as follows. In Section 2, we
first briefly review discrete Gabor transforms, then restate the iterative algorithm for time-varying
filtering proposed in [6, 7] and finally present a proof of the convergence. In Section 3, we present

some numerical examples.

2 Convergence of the Iterative Time-Varying Filtering

In this section, we first describe the iterative time-varying filtering algorithm proposed in [6, 7] and

then study its convergence.
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2.1 Iterative algorithm

Let us first review the DGT studied by Wexler and Raz [8]. Let a signal s[k], a synthesis window

function h[n] and an analysis window function ~[n] be all periodic with the same period L. Then,

M-1N-1 .
S[k] = Z_:o 2__; Cm,nhm,n[k]; (2.1)
L-1
Cmpn = Z s[k]’)':n,n[k]a ' (2:2)
k=0
hnn[k] = [k — mAM|WEANE, (2.3)
Ymnlk] = Y[k — mAM]WEANE, (2.4)

and Wi = ezp(j2r/L), j = V=1, AM and AN are the time and the frequency sampling interval
lengths, M and N are the number of sampling points in the time and the frequency domains,
M-AM=N-AN=L, MN > L (or AMAN < L). The coefficients C; , are called the discrete
Gabor transform (DGT) of the signal s[k] and the representation (2.1) is called the inverse discrete
Gabor transform (IDGT) of the coefficients Cyy .

One condition on the analysis and synthesis window functions -y[k] and h[k] obtained by Wexler
and Raz [8] is the following identity:

L-1
3 hlk + mNJWp™MEy* (k] = §[m]d[n], 0<m < AN -1,0<n<AM-1. (2.5)
k=0

The DGT and IDGT can be also represented in the following matrix forms. Let
C = (CO,O) CO,I, Y CM—I,N—I)T, s = (S[O]a S[l], ft Ty S[L - 1])T

The DGT can be represented by the MN x L matrix Gynxr with its (mN + n)th row and kth
column element ~;, . [k]. The IDGT can be represented by the L x M N matrix Hpxpn with its

kth row and (mN + n)th column element hm »[k]. Thus,
C=Gpynxrs and s= Hp.mnC. ‘ (2.6)

The condition (2.5) implies that

HyumMnGunxL = ILxL, : (2.7)

where I 1 is the L x L identity matrix.
As mentioned in the introduction, the oversampling, which corresponds to the case when M N >

L, of the DGT adds redundancy and is usually preferred for noise reduction applications. This can
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be also seen from [19] where it is proved that the SNR in the transform domain for short-time
Fourier transforms increases when the sampling rate increases. From (2.1)-(2.5), (2.6)-(2.7), one
can see that'an L dimensional signal s is transformed into an MN dimensional signal C and M N
is greater than L due to the oversampling. Therefore, only a small set of MN dimensional signals
in the TF plane have their corresponding time waveforms with length L. Let Dynxmn denote
the mask transform, specifically, a diagonal matrix with diagonal elements either 0 or 1. Let s be
a signal with length L in the time domain. The first step in the time-varying filtering is to mask
the TF transform of s

C1 = DuyNxMNGMNXLS,

where Dy nxmn masks a desired domain in the TF plane. Since the DGT GunxL is a redundant

transformation, the IDGT of C1, Hrxm~nC1, may not fall in the mask. In another words, generally,

GunxLHrxmnC1 # DunxsMNGuNxLHLxMNCi, (2.8)

where MN > L, which is illustrated in Fig. 1(e). Notice that, in the critical sampling case, i.e.,
AMN = L, the inequality (2.8) becomes equality. An intuitive method to reduce the difference
between the right and the left hand sides of (2.8) is to mask the right hand side of (2.8) again and

repeat the procedure, which leads to our iterative algorithm:

so = 8, (2.9)

Ciy1 = DunxMNGMNxLSH (2.10)

sis1 = HpxmnCiy, (2.11)
1=0,1,2,...

The above iterative algorithm is illustrated in Fig. 2.

The iterative algorithm (2.9)-(2.11) is an alternating projection procedure. It is used quite often
in signal recovery applications, such as signal extrapolation and phase retrieval. The important
isses for this algorithm are: When does the algorithm converge? If it converges, to what does it
converge? We study these questions in the next subsection.

Before going to the convergence, let us see what the least squares solution is. Based on the

definition, the least squares solution is the L x 1 vector X that minimizes

IGanxL% — DunxMNGMnxLsll = min[|Gryyxrx — DunxmnGunxesl, (2.12)
where norm || - || is the usual Euclidean norm. Then,
% = (Gl N1 CMIxL) Gl ny L DMNxMNGMNXLS, (2.13)
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where ! stands for the complex conjugate and transpose. Clearly, when the signal length L is large,
the inverse matrix computation is expensive. Although the error in (2.12) is minimized, the DGT of
the least squares solution X may not fall in the mask Dynxmn: GMNxLE # DMNxMNGMNxLX,
when MN > L. Note that when the analysis and synthesis window functions are the same, i.e.,

HpxmN = G}'M ~xL» The least squares solution X in (2.13) reduces to
% = HxMNDuNxMNGMNXLS,
which is the first step s; of the iterative algorithm (2.9)-(2.11).

2.2 Convergence of the iterative algorithm

In this subsection, we want to have a condition on the window functions h[n] and ~[n] for the
convergence of (2.9)-(2.11). We show that, under this condition, the limit of the sequence s; in
(2.11) does have its DGT falling in the mask DyNxmN.

Rewrite (2.9)-(2.11) as follows

Cis) = DynxunGunxLHrxmnCi = (DMNxMNCMNxLHLxMN) DuNxMnGuNxLs, (2.14)

where | = 1,2,.... If we can prove that both matrices Dynxmn and the product GMNxLHLxM_N
are orthogonal projections, the above iterative algorithm converges by the alternating orthogonal
projection theorem (see [14]). A matrix A is an orthogonal projection [14-15] means that (i) A2 = A
and (ii) A! = A, and vice versa.

It is clear that the mask matrix Dy nxamn is an orthogonal projection. For the product matrix

Garn <1, Hpxarn we have, by (2~7),

(GMNxLHLxMN)? = GunxLHLxMN, (2.15)

i.e., the condition (i) for an orthogonal projection is satisfied. For the Hermitian property (ii), we

need the following condition on the window functions h and <y (details can be found in Appendix):

AN-1 AN-1
Y YN + AN + k+mAM] = Y h*[IN +KWlIN + k +mAM], (2.16)
=0 =0

fork=0,1,..,N—-1land m=0,1,..,.M — 1.

With the above condition, the following lemmais not hard to prove.

Lemma 1 The product matriz GpynxrHixmn is Hermitian if and only if condition (2.16) for the

window functions h and v holds .




Proof: To prove Lemma 1, we first re-express both DGT and IDGT matrices Gynxr and

Hywumn by taking the advantage of the forms in (2.1)-(2.4).
For [ =0,1,...,M — 1, let I'; be the following L x L diagonal matrix

I, = diag(v*[0 — [AM],*[1 — IAM],--- ,v*[L — 1 = IAM]),

(2.17)

Wxxn be the N points discrete Fourier transform matrix, i.e., Wyxn = (Wx™)o<mn<n—1- Let

WL be the féllowing N x L matrix consisting of AN many Wyxn as submatrices
Waxr = (Wnxn, WNxn, s WNxN)-

Then, GarnxL can be rewritten as

Wi xrlo
Whxil'

GMNxL =
WrxrTm-1
Similarly, the matrix Hpxpmn can be rewritten as
Hpxmn = (AOWL,(L, A1W;{,xL, e aAM—IWIIIxL)’
where A; is the following L x L diagonal matrix similar to I';:

A; = diag(h[0 — IAM], R[1 — IAM], -+, A[L — 1 — IAM)]).

Therefore,
G H = (WyxTmAnW)
MNxLIILxMN NxLLimin"W Nx[ 0<m.n<M—1
WNXLFOAOWLXL WNxLPOAM—IWLxL
WNxLFM—lAOW;{/xL WNerM—lAM—IW;]xL

For GarnxrHrxmn to be Hermitian we need to have
WNermAﬂW}VxL = WNXLP;A;IW]VXL'
With the form (2.18) for Wi, the above (2.23) can be simplified as follows.

WNxLFmAnW;JxL

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)



AN-1
, = Y Wnxndiag(y'[IN +0—mAMIAIN +0—nAM],---,

1=0
A*[IN + N —1 —mAMJA[IN + N — 1 - nAM))Wy,x
AN-1
= Wyxnv 9, diag(y*[IN +0—mAMJh[IN +0-nAM],---,
=0

V[N + N =1 —mAMJA[{IN + N — 1 - nAM)) Wiy

Therefore, the Hermitian property (ii) for the matrix GynxrHrxmn holds if and only if

AN-1 AN-1
> '[N + k—mAMIA[IN +k —nAM] = 3" RN +k—-mAMPY[IN + k- nAM), (2.24)
=0 =0

fork=0,1,...,N—land0<mn<M~—1.
Since h[n] and [n] are periodic with period L = MAM, the condition (2.24) is equivalent to

AN-1 AN-1
S YN +k—-mAMIRIN + k+nAM] = Y K*[IN+k—mAM]YIN +k+nAM], (2.25)
=0 . =0

fork=0,1,...,N—1and 0 S m,n < M — 1. Notice that the difference between (2.24) and (2.25)
is the difference of the signs in the front of the variable n.

The condition (2.16) can be obtained from condition (2.25). This proves Lemma 1. O

With Lemma 1 and the alternating orthogonal projection theorem, we have proved the followirg

convergence result.

Theorem 1 When the synthesis and the analysis window functions h[n] and vy[n] satisfy condition

(2.16). the iterative algorithm (2.9)-(2.11) converges.

There are two trivial cases where the condition (2.16) holds. The first case is the orthogonal-
like case: h{n] = 7[n] for all integer n. The second case is the critical sampling case: AM = N.
Notice that the continuous Gabor transform is never orthogonal-like unless the window functions
are badly localized in the frequency domain. This, however, is not the case for the DGT. The most
orthogonal-like solution was studied by Qian et. al. in [9-11]. They showed that it is possible
to have the analysis window function « very close to the synthesis window function h when h is
truncated Gaussian. The error between h and v is less than 2 x 10~¢ while they are of unit energy,
and therefore the error is negligible. We will see numerical results later in the next section.

We next want to see what the limit of the iterative algorithm (2.9)-(2.11) is, under the condition

(2.16). Assume § is the limit of the sequence s; and C is the limit of C;. Then,

C = DMNxMNGMNxLHLxMNC = DynxMNGMNxLS,



and

§=HrxMNDuNxMNGMNXLS.
We want to prove
GumnxLS = DMnxMNGMNXLS,

i.e., the DGT of & falls in the mask Dynxmn- Since GMNxLHLxMN is an orthogonal projection

and

DunsmnGunxid = GunxitHixmMnDunxmuNGunxis + (I — GunxLHLxMN)DMNxMNGMNXLS
= Gumnx18+ (I — GunxtHrxMN)DuMnxMNGMNXLS, ' (2.26)
we have that
Gunxr8 L —(I — GuNxLHLxMN)DMNxMNGMNxLS,

where L means orthogonal. Since Dasnxamn is also an orthogonal projection and
—(I = GuNxLHLxMN)PDMNxMNGunx18 = (I — DMNxMN)GMNXLS,
we have Gaynxr8S = DunxmNGrNxLs. This proves the following Theorem 2.

Theorem 2 Under condition (2.16), the DGT cf the limit 8 of the iterative algorithm (2.9)-(2.11)

falls in the mask Dynxmn, -6,
GMNxLS = DMNxMNGMNxLS. (2.27)

With the above result, one might ask whether it violates the known fact that an image of a TF
transform of a signal in the TF plane can not be of compact support. This is because that a signal
can not be time and band limited simultaneously. To answer this question, we first need to know
that the above known fact is true for continuous TF transforms. Moreover, its proof is based upon
the marginal properties of TF transforms. It may not be true for discrete TF transforms. In other
words, discrete TF transforms may have compact support [6].

For the least squares solution % in (2.13), its Gabor transform GpnxrX is the orthogonal
projection of DpnxmMNGMNxLS onto the space of all signals Gy nxrX. Since GynxLHLxMN 18

an orthogonal projection, by (2.26), we have proved that the least squares solution
X =HrxMNDMNxMNGMNxLS = S1.

This proves the following Theorem 3.




Theorem 3 Under condition (2.16), the first iteration sy of the iterative algorithm (2.9)-(2.11) is

equal to the least squares solution in (2.13), i.e., s; = X.

With Theorem 3, one will see in the next section that the iterative algorithm (2.9)-(2.11)
improves the least squares solution when the number of iterations increases, and in the meanwhile
one does not need to compute the inverse matrix in (2.13). Theorem 3 also provides another way
to compute the least squares solution when condition (2.16) holds on the window functions. Note
that the least squares solution in (2.13) does not depend on the synthesis window functionvh[n].
This means that all the least squares solutions are the same for all pairs of synthesis and analysis
window functions as long as the analysis window functions are the same, such as the Gaussian
function. Therefore, the improvement from the iterative algorithm with window functions satisfying -
Condition (2.16) is over the least squares solutions not only for the window functions satisfying

Conditon (2.16) but also for other window functions.

3 Numerical Examples

In this section, we test two sets of window functions of the DGT. The first set of window functions
are the most orthogonal-like ones obtained from [11, 18-19]. For this set of window functions,
their difference, and the absolute values of the differences between the left and right hand sides of
condition (2.16) are shown in Fig. 3, respectively. The second set of window functions only satisfies
the Wexler-Raz condtion (2.5) and correspondingly, they are shown in Fig. 4. The test signal is
s[n) = r[n] + nn), where z[n] = cos(2n((n + 1)/115)3) and n(n] is white Gaussian noise. The mean
square errors between the true signal z(n) and the filtered ones are shown in Fig. 5 and Fig. 6 for

the two sets of window functions, respectively. One can clearly see the performance difference.

4 Conclusion

In this paper, we presented a convergence proof of the iterative time-variant filtering algorithm
proposed in [6, 7]. We proved that, under the condition, the limit of the time waveforms from the
iterative algorithms has the desired TF characteristics. We also proved that, under the condition,

the first iteration is equal to the least squares solution.
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Figure Captions

Fig. 1 TF transform illustration.
Fig. 2 Iterative time-varying filtering algorithm.
Fig. 3 The first pair of window functions.

Fig. 4 The second pair of window functions.

Fig. 5 The first set window functions: Solid line: SNR vs. iteration steps, where the least squares

solution is marked by *; Dashed line: The errors between masked and unmasked DGT of the

iteration solutions.

Fig. 6 The second set window functions: Solid line: SNR vs. iteration steps; Dashed line: The errors

between masked and unmasked DGT of the iteration solutions. The least squares solution is

marked by *.
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Figure 1: TF transform illustration.
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Figure 2: Iterative time-varying filtering algorithm.
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Abstract

In this paper, the determination of multiple frequencies in undersampled waveforms
is studied using multiple smaller size discrete Fourier transforms (DFT). Given the sizes
of multiple DFT, a range for the detectable frequencies in undersampled waveforms is
presented.

1 Introduction

One intuitive way to detect the single frequency f in a single frequency complex-valued
waveform z(t) is first to sample z(t) at a sampling frequency f, > f and then to implement
the .V point discrete Fourier transform (DFT) with N > f, and a single peak in the DFT
domain can be seen. The reason why the above sampling frequency f, does not have to be
at least twice of the frequency f is because the frequency of the waveform z(t) is only single
sided. When the frequency f is large, the sampling frequency is also large in this method.
Several methods to detect a single frequency in undersampled waveforms have appeared, see
for exémple (1-4]. The basic idea for these methods is to use multiple DFTs with smaller

sizes for undersampled waveforms with different sampling rates. One of the advantages of
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Research (AFOSR) under Grant No. F49620-97-1-0253, and the National Science Foundation CAREER
Program under Grant MIP-9703377, the 1998 Office of Naval Research Young Investigator Program (YIP)
under Grant N00014-98-1-0644, and the Unversity of Delaware Research Foundation.



using undersampled waveforms is the hardware cost reduction in applications [5]. In some
applications, such as velocity synthetic aperture radar (VSAR) [8-9], the received signals
may be of undersampled nature.

In this paper, we study the estimation of multiple frequencies from undersampled complex
valued waveforms by also using multiple DFTs for undersampled waveforms with different
sampling rates. Given the sizes of these DFTs (or the sampling rates) and the number of
multiple frequencies, we provide a range of the detectable frequencies. Note that a different

approach was studied in [12] in angle estimation.

2 Multiple Frequency Estimation

Without loss of generality; we assume that the multiple frequencies in a waveform z(t) are
fi = Ny, fa=Na, ..., f, = N,and Ny, Ny, ..., N, are all nonnegative integers. For the integer

frequency assumption, see for example [1]. The waveform z(t) is represented by

p o
() =, At
=1
where A4;. 1 <1< p, are p nonzero complex-valued coefficients. Let f; = m be the sampling

frequency with a positive integer m. Then the sampled waveform is
n £ ;
Tp[n] = x(—rﬁ) =y Ae?miNm/m € Z. (1)
=1

The problem of interest is to detect the multiple frequencies N}, 1 < I < p, from the multiple
undersampled z(t): Z,,. [n], n € Z, with m, <max{Ny, ..., Ny} for 1 <7 < ~. The main idea
in the following study is to implement the m, point DFT for the undersampled waveforms
Zm.[n), 0 <n <m, —1for1<r <. From these multiple DFTs, the multiple frequencies
can be detected. To study the details for a general solution, let us 'ﬁrst see the single

frequency case, i.e., p=1in (1). In this case, let ¥ £ N,. Then

I, [n] = Ae?IN™ neZ, AF#0. (2)

2




Let N = n,m, + k;, 0 < k, < m, — 1, i.e., k, = N mod m,, then the m, point DFT of

T, [n],0<n<m, —1,is
DFT,, (T, [n]) = AS(k — k;), 0< k< m, — 1. (3)

That is, the residue k, = N mod m, can be detected from the m, point DFT of ., [n] for
1 < r < «. Therefore, to detect the frequency N becomes to determine the integer N from
all the residues k, for 1 < r < . The following lemma tells us the range of the detectable

N given m,, my, ..., m,, which is called the dynamic range in [1].
Lemma 1 The above single frequency.N can be uniquely determined if
0 < N < lem{my, mg,...,m;}, . (4)
where lcm denotes least common multiple.
Proof: Let m élcm{ml,mz, ...,m,}. For N > 0, let Sy denote the 1 x v integer vectolr
Sn 2 (ki(N), ka(N), -+, ky(N)) with k,(N) = N mod m,. (5)

To prove Lemma 1, it is sufficient to prove that, for any two different integers N, and N,
with 0 < N, # N, < m, the vectors Sy, # Sn,. Assume this is not true, i.e., there exist two
integers N, and N, with 0 < N; # N, < m such that Sy, = Sy,. In other words, N; — N, is
a multiple of m, for each 1 < r < 7. It implies N; — N, = nm for a nonzero integer n, which
is impossible when 0 < Ny, N, < m. This contradicts with the assumption, i.e., Lemma 1 is
proved. O

Lemma 1 is basically the Chinese Remainder Theorem (CRT), see for example (7). It is
clear that the single frequency N can be found from the detected residues k,, 1 <7 < 7, by
using the CRT. The proof suggests another method to detect N by simply looking up the

table of the vectors Sy defined in (5), which can be done in priori. As a remark, the reason



for maintaining the above proof is to motivate the following general solution for multiple
frequency estimation.
We now study the multiple frequency estimation problem, where p frequencies appear in

a waveform z(t) with its undersampled versions shown in (1) with m = my, mg, ..., My. Let
ki,=Nmodm, 1<1<p,1<r <. (6)
Then the m, point DFT of z,,.[n], 0 <n <m, —1,1is

P
DF T, (T, [n]) =Y Ab(k —kip), 0<k<m, —1,1<7<7. (7)

=1
This tells us that the residue frequencies k;, can be seen as peaks in the DFT domain, i.e.,
they can be detected from the m, point DFT of zp, [n]. Thus, the determination of the
original p frequencies Ny, Na, ..., N, becomes the determination of the nonnegative integers

Ny, Ny, ..., N, from their residues ki, = N, mod m, for 1 < I<pand1 <7 <9 The

following result gives a range of Ny, Ny, ..., N, for the uniqueness of the determination.

Theorem 1 Assume that a complez valued waveform z(t) contains p different frequencies
fi=N>0for1 <1< p. Letm, 1 <1 <7, be y sampling rates in the undersampled

versions Im,[n] of z(t) in (1) withm=m,, 1 <1 <. Let
y=np+6, 0<6<p, (8)

where 1 is a nonnegative integer. Then the p frequencies fy = Ny > 0 for 1 < l < p can be

uniquely determined by using the m, point DFT of T, [n] for 1 <7 < v if

maz{Ny, Na, - -+, N,} < max{m,my, ma, “o My}, 9)
where
m A minlgrl <rap<<rp<y lcm{mrumrzy te amrn}’ ifn > 0 . (10)
0, otherwise,

where n is defined in (8).




Proof: If m < max{m;,m,,- +-,m,}, Theorem 1 is straightforward by simply using
the single DFT for the maximum m,, 1 < r < . Therefore, in what follows we assume
m > max{my, my,---,m,}.

For an integer N, let k,,(N) = N mod m,. For nonnegative integers Ny, Ny, eeey N, let

S (N1, - -+, N,) be the following set
Sr(Nla ) Np) = {kl,r(Nl)v v ':kp,r(Np)}- | (11)
Let S(Ny,---, N,) be the following product set
S(Ny, -+, Ny) = 51(Ny, -+, Np) x +-- x Sy(Ny, -+, N,). (12)

To prove Theorem 1, it is sufficient to prove the following uniqueness: if there are two sets of
p different nonnegative integer frequencies {N;, Ny, oy Np} and {My, My, ..., M,} such that
S(Ny, -+, N,) = S(My, -+, M), max{Ny, N,,---,N,} < m, and max{M;, Ma,---,M,} <
m. then the two frequency sets are equal, i.e., {Ny}, Ny, ..., Ny} = {My, M,,...,M,}. We first
prove that {N, Ny, ..., N, } C {M;, M, ey My}

By the assumption m > max{m;, m,, ..., m. } in the beginning of the proof, we know that
n > 1. By the condition S(Ny,---,N;) = S(My, - - -, M) we obtain that for N; and each m,
there exists at least one integer denoted by y, with 1 <y, < p = 7 such that Ny - M, =0
mod m, fo_r 1 <7 <. By (8), on the other hand, 7 is at least 7 times larger than 7 = p.
This means that there are at least 7 many my,,...,m, withl1<r <ry<...< Ty < v such
that

A
My, =M, =-=M, 2M,

where 1 < |y < 7. Thus, N; — M, = 0 mod m,, for e = 1,2,...,7. By conditions

max{Ny, Ny, ..., N;} < m <lem{m,,, «yMy, } and max{M;, M, ..., M} <m <lem{m,,, oy My, }

from the definition of m in (10), we conclude N; = M, similar to the proof of Lemma, 1. This

proves that N, € {My, M, ..., M,}, and therefore {N1, Ny, ..., Ny} € {My, M,, ..., M,} can be

5




similarly proved. By the same argument, we can prove {M1, Ma, ..., M,} C {N1, Na, -y N,}.
This proves Theorem 1. O

From the proof, similar to what was mentioned after the proof of Lemma 1, the p
frequencies Ni, Nz, - N, can be detected by looking up the table of the product sets
S(Ni, Ny, ..., N,) defined in (11)-(12). The uniqueness in Theorem 1 guarantees the correct-
ness of the solution when the condition (9) is satisfied, i.e., when these frequencies are in the

range defined by (9). Other determination methods similar to the CRT for single frequency

estimation might exist and are definitely interesting.

3 Example

In this section, we see one simple example. Consider the case of two frequencies N; and Na.
We choose m; = 17, mg = 19, m3 = 20, and ms = 21. In this case, p = 2, v =4, and
therefore n = 2in (8). Clearly, m = mims = 323. By Theorem 1, all two different frequencies
N, and N, in the range [0, 322] can be uniquely determined from the undersampled waveforms
with sampling rates 17, 19, 20 and 21 by using 17, 19, 20 and 21 point DFTs, respectively.
\We can see that the sampling rates are more than 15 times less than the Nyquist sampling

rate when N, and N, are close to 322.

4 Conclusion

In this paper, we studied the estimation of multiple frequencies in undersampled complex
valued waveforms using multiple DFTs. Given the sizes of these multiple DFTs or the
undersampling rates, we provided a range for the detectable frequencies. Our example shows
that a significant sampliﬁg rate reduction over the Nyquist sampling rate can be achieved.
It should be noticed that the range determined in Theorem 1 might not be the maximal

one. The search of the maximal range given p, ™1, ..., My is under our current investigation.

After this paper was written, some results on the maximal range were obtained in [10]




with a sufficient condition on the multiple frequencies. The approach in this paper might
be generalized to multidimensional frequency estimation by using multidimensional Chinese
Remainder Theorem in [6]. In [11], the results have been recently applied in enlarging the
dynamic range of the detectable parameters for polynomial phase signals using multiple lag

diversities in high-order ambiguity functions.
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Abstract

[n this paper, we investigate the feasibility of blind
ynal recovery from undersampled data collected from
1 plurality recervers. We show that although an un-
Jr rsampled communication system s not completely
i ntifiable 1n general, such an obstacle can be over-
ome by employing proper precoding with an arbitrary
amount of the bandwidth ezpansion in the transmilter.
I he main contribution of this study is the formulation
of a generic framework for the undersampled systems,
wud the derivation of conditions for @’ class of filters
which we term ambiguity resistant precoders.

1 Introduction

Because of its practical significance, blind identi-
fication of FIR channel has received considerable at-
1ontion in the past decade in communications and sig-
nal processing [1]. To date. almost all research on
hind identification deals with channel outputs that
are sampled at least at the baud rate. In certain appli-
-ations. a communication system may be undersam-
pled with rate 1/LT (L > 1), for reasons ranging from
fixed hardware to variable data rates of source signals.
(‘learly, petfect signal recovery is not possible in these
<narios. However, when a collection of low rate ob-
« rvations is available, it may be feasible to restore the
«ource signals by combining partial information from
Aifferent receivers.

In this paper, we study the application of multiple
teceivers in blind source recovery for undersampled
communication systems. To put this into perspective,
consider an M-receiver undersampled system depicted
m Figure 1, where L is an integer. Since the receiver
part is mathematically equivalent to a multiple input
and multiple output (MIMO) system, one can at most
blindly recover the input towards a matrix ambiguity.

*This work was sponsored in part by the Air Force Office
«f Scientific Research (AFOSR) under Grants No. F49620-97-
1.0318 and No. F49620-97-1-0253, and the National Science
Foundation CAREER Program under Grants MIP-9703074 and
MIP.9703377.

University of Delaware
Newwark, DE 19716

The question, then, becomes: is there any affordable
way to restore the blind identifiability?

Filterbank precoding has been proposed to com-
bat ISI channels in wireless communications (3]. The
same concept has been applied by Giannakis for blind
channel identification. In [4], it is shown that an
FIR channel can be blindly determined with mini-
mum redundancy introduced by precoding. Motivated
by these studies, we propose to use precoding tech-
niques to solve the blind identification problem for the
undersampled system. More specifically, we study a
class of ambiguity resistant precoders which is capa-
ble of removing the ambiguity introduced by under-
sampling. In the remainder of this paper, we shall
denote the system in Figure 1 with rate K/N pre-
coder as [(K,N);(L,M)]. A regular communication
system with transmission induced redundancy can be,
cast into the same framework.

2 A Generic Framework

Throughout our discussion, the follow assumptions
are invoked for the [(K, N):(L, M)} system under con-
sideration:

A.1: The precoding filter has dimension N x K, where
N> K;

A.2: NJK xM/L>1,ie, NM>KL.

A.lis clearly required in the precoding, otherwise
there will be no increase in redundancy which ren-
ders blind identification impossible. The same is true
A2 since MN/KL quantifies the overall system re-
dundancy. Under A.1 and A.2, there are still many
possible combinations of the four parameters, K, N,
L, and M, which make a unified analysis difficult. The
following lemma simplifies the our data model by cast-
ing any system that satisfies A.1 and A.2 into a generic
framework.

Lemma 1 Any [(K,N):(L, M)] system with N >
K and NM > K L can be cast into .a generic
[(K,N);(N, M)] system with K < N < M.
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Figure 1: Precoding for undersampled an antenna array system

When L = M = 1, the system becomes a symbol-
rate communication system with input redundancy.
The reader is referred to [5] for proofs of the above
lemma and theorems in the ensuing sections.

3 Blind Identification

The output of the generic system in Figure 2 can
be expressed as .

Y.v-l(5) = HM‘L(:)UMXI(:) = H(Z)GNXR(:)SJ\'XI(:()v

where H(:) characterizes the unknown channel,
whereas G(:) represents the known precoder. The
problem herein 1s to determine the input, s(z), and in
many cases the channel, H(z), from the oulput, y(2).
using only knowledge of the precoder filter, G(2).

To facilitate the forthcoming discussion, let us first
lay some groundwork by reviewing an important result
regarding FIR MIMO systems.

Theorem 1 [6] For an N-input M-output (M > N)
FIR system with transfer function H(z), the following
statements are equivalent: «

Blocking with|s{n] un]

y(n]
block size K G(2) -

s(n]

H(z)

N x K MxN

Figure 2: A generic representation

1. H(z) is irreducible, i.c., rank[H(z)] = N, Vz € c
and rank[H,] = N;

2. H(z) and the inpul vector u(z) can be identified
up to an N x N invertible constant ambiguity ma-
triz from the outputs using second order statistics.

If the precoder is designed to be irreducible, the
composite transfer function, Hc(z) af H(z)G(z), is
clearly irreducible. Theorem 1 asserts that the system
input s(z) can only be determined within a K x K ma-
trix ambiguity directly from y(z). However the prob-
lem of interest here is to find s(z) and H(z) such that

y(z) = H.(2)s(2),

where G(z) is a known precoder. This motivates the
following blind identifiability concept.
Definition: The system in Figure £ is blindly iden-
tifiable if §(z) = as(z) and H(z) = BH(z), where @
and 3 are two scalars, are the only solution for the fol-
lowing system given the oulput y(z) and the precoder
G(z): y(2) = H(2)G(2)8(z).

We tackle the blind identification problem in two
steps: (i) determine what we term the ambiguous in-
puls,

subject to H.(z) = H(2)G(z),

a(z) : Ta(z) =u(z), . (1)

where T is an N x N fully rank constant matrix,
blindly from the system output y(z). It can be accom-
plished using many existing approaches when H(z) is
irreducible; (ii) Once 1i(z) is identified, the blind iden-
tification problem reduces to whether or not s(z) can

1044




he determined from @(z) in the presence of a full rank
anbiguity matrix T (or T™ ). We then show that
(here exists a class of ambigutty resistant precoders
« lnch can resolve the matrix ambiguity without addi-
.ional information. Since Step (i) is well studied [6, 7],
ur focus in the remainder of this paper will be de-
voted to the precoder part.

3.1 Ambiguity Resistant (AR) Precoders

\We first define the concept of ambiguity resistance.

Definition: An N x K FIR irreducible precoding fil-
ter G(z) 1s ambiguity resistant if its input s(z) can be
umiquely determined up to a scalar from its ambiguous
output, {0(z) : Ti(z) = u(z)}, where T is an un-
tnoun invertible N x N constant matriz.

A precoder is not ambiguity resistant if there exists
+ non-identity matrix R # oT and 8(z) # Bs(z) such
that Rua(z) = G(z)8(z), or equivalently,

RT™'G(z)s(z) = G(z)§:(z),

for any given s(z).

Denote E = RT ™! and rewrite the above equation
using matrix input and matrix output, the precoder is
ambiguity resistant unless there exists an N x N full
rank. nonidentical, constant matrix E and a A" x K
nonidentical matrix X(z) such that

EG(:) = G(2)X(2) (2)

X(z) is the polynomial ambiguity of the input which
cannot be determined. Note that since G(z) is irre-
Hducible, det(X(z)) in (2) is a nonzero constant, i.e.,
X{(:) is ummodular.

The above is summarized in the following theorem.

Theorem 2 An N x R FIR irreducible precoding fil-
ler G(:) 13 ambiguity resistant if and only if there does
nol exrist an N x N full rank constant matriz E # al
for any constant a, and a K x K matriz X(z) # A1

Jor any constant B, such that the above identity (8)
holds.

To examine the ambiguity resistancy of a given pre-
coder, note that it follows from Equation (2) that
X(:) = G~!1(2)EG(z). Hence,

EG(:) = G(2)G~(2)EG(2). (3)

By representing the above equation in the time do-
main, one may check the ambiguity resistancy of G(z)
by solving a linear equation set. If E = al for
Some constant a is the only nonzero solution, then

G(z) is ambiguity resistant. Otherwise, it is nec-
essary to check whether X(:) = A1 for some ¢on-
stant 8 or EG(z) = G(z). since it is possible to have
EG(:) = G(:) with E # ol.

When R = 1, X(z) = a for some nonzero constant
a is always true. By Theorem 2, the following corol-
lary is straightforward.

Corollary 1 An N x 1 FIR invertible precoding filter
G(z) 1s always ambiguity resistant for N > 1.

Corollary 2 Any N x K with K > 1 block précoder
G(z), i.e., G(z) is a constant malriz, is not ambiguity
resistant.

Corollary 1 is not surprising since when K = 1,
the [(1, N); (N, M)] system reduces to a conventional
oversampled system which is clearly identifiable. With
this result, we only need to consider the case of K > 1.

Next, we want to present some necessary conditions
on the ambiguity resistance.

Theorem 3 If an N x K, K > 1, FIR irreducible
precoder G(z) is ambiguity resistant, then

1. there ezist no full rank constant matriz E and
invertible K x K polynomial matriz V(z) such
that the first column in matriz EG(z)V(z) :s
(1,0,0,...,0)T;

2. N>K.

3. the order Q of G(z) must satisfy the following
lower bound

N+ K?-1
> L
92 —Rxx !

The above Theorem will allow us to construct a
family of AR precoders in Section 3.2.

Lemma 2 [8] When Guxx(z) is irreducible, its
Smith-McMillan form is given by

G =W [ o v,

where Wy n(2) and Vi x(2) are referred to as the
left and right unimodular matrices, respectively, in the
Smith-McMillan decomposition of G(z).

The left unimodular matrix, W(z), can be further
decomposed into

W(z) = [w:txx(z) w:x(w—x)(z)] .
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Clearly, W*(z), associated with the identity part of
the middle Smith form, essentially defines the column
span of G(z). The Smith-McMillan decomposition of
a tall invertible matrix can be simplied as G(z) =
W?(:)V(z), where W*(:) is invertible.

Theorem 4 A precoding filter G(z) is ambiguity re-
sistant if and only if there erists no N x N con-
stant matriz E such that both W(z) and EW(z),
W?'(z) # aEW?(z), are left unimodular matrices in
the Smith-McMillan decompositions of G(z).

3.2 A Family of AR Precoders

Motivated from the necessary conditions in Theo-
rem 3, we now want to construct a family of ambigu-
ity resistant precoders G(z). We have the following
result.

Theorem 5 For any positive integer N > 1, the fol-
lowing matriz G(z) with size N x (N —1) is ambiguity
resistant: . :

F 1 0o --- 0 0
=Y 1 0 -« 0 0
0 2z 1 ... 0 0
Gi{:) = . . '
0 0 o =71
L 0 0 0 0 =277 dINx(N-1)
(4)

for an integer v £ 0.

The above theorem can be easily modified for con-
tructing simple AR precoders of any size.
3.3 System Identifiability

With the establishment of ambiguity resistant pre-
coders, we now give a set of sufficient conditions for
blind identifiability of the system in Figure 2.

Theorem 6 The system depicted in Figure 2 is
blindly 1dentifiable when

1. G(z) 1s ambiguily resistant;
2. H(z) s irreducible;

3. G(z) has order @ > [M(BeA@) _ . _ R where
o = (42, and Qu is the order of H(z).

4 Algebraic Sequence Identification
Algorithm

We derive in this section an algebraic algorithm
which can accomplish blind identification with a finite
number of observations. For this purpose we only con-
sider noise-free data without claiming anything con-
cerning the optimality of the algorithm.

Since the ambiguous precoder output, {ii[n]}, can
be identified using one of the existing multichannel
blind ideatification algorithms, e.g., [9, 7]. we limit
ourselves to the problem of removing the matrix am-
biguity from {@[n]}. A

Given a finite collection of the ambiguous precoder
outputs, {G[n]}223, it is not difficult to establish the
following relations from (1),

0] s(-Q]
diag(T---T) : =Gn : » (5)
(R - 1 s[R -1

where Gp is a block Toeplitz matrix of G{n].

Upon denoting t; the ith column of T, t =
(¢ ---¢X)", and U = [@7[0)---67[R — 1]]" © Lyxw,
we may rearrange Equation (5) with respect to its un-
knowns, namely, s and t, and obtain )

6. B[ 3] =0. (©

Since we have N R equations with (R + Q)K + N?
unknowns, the above equation set becomes overdeter-
mined as R increases, provided that N > K. The
system can be identified using simple least squares fit-
ting when G(z) is ambiguity resistant.

The above identification procedure can be summa-
rized as follows,

1. Determine the precoder output vectors within
an N x N matrix using any existing MIMO
blind identification method (e.g., the subspace
approach in (7, 6]).

2. Form a linear equation set using the ambiguous
precoder output vectors, {@[n]}1=3, as in (6).

3. Determine elements of the ambiguity matrix from
the the least significant singular vector of (?7).

4. Recover the message signals as s(z) =
G-1(z)T "a(z).

1046




5 Numerical Examples

Some numerical results are presented in this sec-
non to validate the identifiability and the efficacy of
the proposed algorithms. All examples involved an
«.antenna system with the unsampling rate 3. The
(ollow ambiguity resistant precoder described in Sec-

1 0
tion 3.2 was used: G(z) = 2= 1

0 =z?
Lem simulated is [(2,3):(3,8)]; and the order of the
channel is 2.

The closed-form input estimation approach de-
«cribed in [7] was used to determine the ambiguous
precoder output, @[n]. Only 30 estimated vectors were
applied to the proposed method. Figure 3 compares
the signal constellations of the antenna outputs, the
recovered precoder outputs, and the recovered signals.
As shown in Figure 3 (¢), existing approaches can only
restore the transmitted signals, i.e., the preceder out-
puts, within an matrix ambiguity. However, with pre-
coding and the algorithm presented in this paper, the
symbol sequence can be blindly recovery without sig-
nificant increase in bandwidth.

Figure 4 shows how the mean-square error (MSE)
of the symbol estimates varies with the SNR.

. The sys-
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Figure 3: Signal Constellations before and after Blind
Recovery

6 Concluding Remarks

In this paper, we have shown that by introducing
tedundancy, albeit minimum, at the input through
precoding techniques, blind identification can be ac-
complished for undersampled systems in most scenar-
i0s. An important concept on precoders, i.e., ambigu-
ity resistant precoders, has been introduced and used

Figure 4: MSE vs. SNR

in the blind identification. Some conditions for ambi-
guity resistant precoders have been given and a family
of such precoders has been presented. Also presented
is an algebraic algorithm which determines the un-
knowns of an undersampled system with a finite num-
ber of data samples.
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Abstract

Ambiguity resistant (AR) precoding has been recently
proposed in intersymbol interference (ISI) and multipath
cancellations, where the ISI/multipath channel may have
frequency-selective fading characteristics and its knowledge
ss not necessarily knoun. With the AR precoding, no diver-
suty 1s necessary at the receiver. In the precoding, the AR
property for a precoder plays an important rule. In this re-
search, we sntroduce the concepts of precoder distance and
optimal precoders, and characterize and construct all opti-
mal systematic AR precoders, when additive channel ran-
dom noise is concerned. A necessary and sufficient con-
dition for an AR precoder to be optimal is given, which is
casy to check. With the optimal precoders, numerical sim-
ulations are presented to show the improved performance
over the known AR precoders in ISI cancellation applica-
tions.

1 Introduction

Intersymbol interference (ISI) and multipath fading are
important problems in digital communications. Precod-
ing is one of the techniques for the ISI/multipath cancel-
lation. The conventional precoding techniques, such as

Tomlinson-Harashima (TH) precoding and trellis precod-

ing, and other ISI cancellation techniques, such as deci-
sion feedback equalizers, usually suffer from the spectrum-
null characteristics in frequency-selective fading channels.
Meanwhile, the conventional precoding methods require
the knowledge of the ISI channpel at the transmitter, i.e.,
a feedback channel is needed. Recently, a new precoding
technique has been introduced in {1-6]. Unlike the con-
ventional precoding the new precoding expands the band-
width in a minimum amount as an expense. The advan-
tages of the new precoding are the following: when there is
no other noise but the ISI, it provides an ideal linear FIR
equalizer at the receiver no matter whether or not the ISI
channel has spectrum-null; it is channel independent, i.e.,
the feedback channel is not necessary; it is linear (no mod-
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from the Department of Electrical Engineering, University of
Delaware, the Air Force Office of Scientific Research (AFOSR)
under Grant No. F49620-97-1-0253, and the National Science
Foundation CAREER Program under Grant MIP-9703377.
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Email: zzia@ee.udel.edu

ulo operation is needed); the transmitter or receiver does
pot have to know the ISI channel for the equalization, i.e.,
blind equalization is possible.

For the blind equalization with the new precoding tech-
nique, no diversity at the receiver is needed for a single re-
ceiver system, and a reduced sampling rate over the baud
rate can be achieved in an antenna array receiver system,
which are not possible for the existing blind equalization
techniques, see for example {7-8], without using precod-
ing. For this purpose ambiguity resistant (AR) precoders
have been introduced in [2-3] for combating the ambigu-
ity induced by the ISI channel. Besides the AR precoder
concept, some properties and families of AR precoders are
presented in [2-5]. :

In this research, the concept of the optimal precoders
is introduced, when additive channel random noise is con-
cerned. The optimality is based on the following crite-
rion: the output symbols after the precoding should be as
far away from each other as possible in the mean square
sense. This criterion is similar to the one in the modu-
lation symbol design in communication systems to resist
random errors. Given a precoder G(z), a polynomial ma-
trix of the delay variable z ™!, its distance is introduced by
using the coefficients of its coefficient matrices. It is proved
that the distance is proportional to the mean distance of
the ISI channel output symbols, which controls the perfor-
mance in resisting additive channel random noise. Thus,
an AR precoder is optimal if and only if it has the largest
distance. We then characterize all optimal systematic AR
precoders, where all systematic AR precoders are charac-
terized in [4-5]. A necessary and sufficient condition for an
AR precoder to be optimal is given, which is easy to check.
The optimality is channel independent. Finally, Numerical
examples are presented to illustrate the theory.

2 Ambiguity Resistant Precoders via
ISI Cancellation

A precoded single receiver system and undersampled
antenna array receiver system are shown in Fig. 1 and Fig.
2, respectively, where G(z) in Fig. 1 and G(z) in Fig. 2
are precoders, H(z), Hi(2), ..., Hu(2) are the ISI channel
transfer functions, and all of them are either polynomial
matrices or polynomials of the delay variable z~'. In what
follows, boldface captial English letters denote polynomial
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matrices.

Figure 1: Single Antenna Receiver with Baud Sam-
pling Rate.

precoder
complex
e o I g R
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Figure 2: An Undersampled Antenna Array Receiver
System.

Since the two systems in Fig. 1 and Fig. 2 can be con-
verted to two multi-input multi-output (MIMO) systems,
the existing MIMO system identification techniques, see
for example [9], can be used. However, based on these
results on MIMO system identification, one can at most
identify an MIMO system to a constant matrix ambiguity.
In order to further resist the constant matrix ambiguity
induced from an MIMO system identification algorithm,
ambiguity resistant precoding has been introduced in [2-
3]. A precoder G(z) of size N x K is called ambiguity
resistant (AR) if

(i) G(z)is irreducible, i.e., matrix G(z) has full rank for
all complex values z including z = 09,

(ii) the following equation for K X K polynomial ma-
trix V(z) bas only trivial solution V(z) = alk for
a noonzero constant a:

EG(z2) = G(2)V(z), (2.1)
where E is an N x N nonzero constant matrix and

Ix is the K x K identity matrix.

It has been shown in [2] that G(z) is AR implies K < N.
In other words, the precoding has to expand each K sam-
ples into N samples. This is intuitively clear that cer-
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tain redundancy is peeded to resist errors. In a band-
limited channel, the minimum bandwidth expansion is de-
sired. This implies that the optimal parameter K should
be K = N—1given Ninan AR precoder.

Let G(z) in Fig. 1 take the following form

In
o(M-N)xN

G(2) = [ ] G(2),

where M > N and G(z) is an N x K polynomial matrix.
It has been proved in [22-23] that, if the precoders in Figs.
1-2 take the above forms and G(z) are AR, then the input
signals in the systems in Figs. 1-2 can be blindly identi-
fied from the output signals, where the ISI channels H(z),
Hi(z), -y Hum(2) may have spectrum-null. In (2-5), fam-
ilies of AR precoders have been obtained. In [2-3], linear
closed-form blind identification algorithms have also been
obtained.

The AR precoders have been generalized in (3] to poly-
nomial ambiguity resistant (PAR) precoders for resisting
not only constant matrix ambiguities but also polynomial
matrix ambiguities. The main advantage of using PAR
precoders in the systems in Figs. 1-2 is that one can di-
rectly identify the input signals from the output signals
by resolving the channel polynomial ambiguities without
using any MIMO system identification algorithm. In the
rest of this paper, for simplicity we however focus on AR
precoders although an analogous approach applies to PAR
precoders.

3 Optimal Ambiguity Resistant Pre-.

Although all AR precoders found in [2-5] are good
enough in theory to be ased to cancel the ISI without ad-
ditive noise, AR precoders may have performance differ-
ence when there is additive poise in the channel. Then the
question becomes which AR precoder is “better,” where
“better” means better symbol error rate performance at
the receiver after equalization. In this section, we study a
criterion for AR precoders and also optimal AR precoders
by introducing the distance concept for a precoder.

3.1 Distance and Criterion for AR Pre-
coders

To study the above question, let us briefly recall the
conventional error control coding theory. In error control
coding, inputs, code coefficients and outputs are allin a
finite field, such as 0 and 1, and the coding arithmetic is
the finite field arithmetic. Therefore, the Hamming dis-
tance between two finite sequences of 0s and 1s is usually
used. Moreover, the minimum distance between all coded
sequencies can be calculated from the code itself. The min-
imum distance controls the performance of the error rate
at the receiver for decoded sequences, when only additive
random noise occurs in the channel. The differences here
are, at first, the inputs, precoder coefficients and outputs
are all in the complex-valued field and then the channel



bas ISI besides additive random noise. Although this is
the case, the “distance” of the ISI channel output values
also controls the performance in resisting additive channel
random noise. To the first issue the conventional Ham-
ming distance does not apply here and the Euclidean dis-
tance for the output signal values after precoding needs to
be used. Since it is hard to deal with the minimum Eu-
clidean distance concept in the complex-valued field, the
Euclidean distance here is in the mean sense when the in-
put signal is modeled as a complex-valued random process.
To the second issue, we need to investigate how the Eu-
clidean distance of the output values of a precoder affects
the Euclidean distance of the output values of the ISI chan-
pel, which determines the performance of the precoder in
resisting additive random errors.

To study these issues, let us go back to the systems with
ISI in Figs. 1-2. By blocking the ISI channels from serial
to parallel, the systems in Figs. 1-2 can be unified into the
one shown in Fig. 3, where X{z) is the K x 1 polynomial
matrix of the z-transform of the input vectors, G(z) is the
N x K AR precoder, H(z) is the M x N polynomial matrix
of the ISI channel, n(z) is the M x 1 polynomial matrix
of the z-transform of the additive white_noise vectors, and
Y(z) is the M x 1 polynomial matrix of the z-transform
of the channel output vectors.

Xtz) Y{(z)

Qiz) x(z)

niz)

Figure 3: Unified System.

Let

Qc Qu
G(z) = ZG(n)z'". H(z) = Y H(n)™",

n=0 n=0

X(z) =Y X(m):z™" Y(2) = S oY)

Let the z-transform of the precoder output vector sequence
be

V(z) £ G(2)X(2) = Z V(n)z™",

and the z-transform of the ISI channel output vector se-
quence be

U(z) H(E)V() = Y U=

Notice that all X(n).Y(n),V(n),V(n),n(n) are constant
column vectors while G(n), H(n) are constant matrices.
To study the mean distance for the output values in U(n),
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let us use matrix representations for linear transforma-
tions. By concatenating all vectors X (n) together, all vec-
tors V(n) together, all vectors U(n) together, all vectors
n(n) together, and all vectors Y (n) together, we obtain
bigger block vectors X =(z(n), V= (v(n)), U = (u(n)),
n = (n(n)), and ¥ = (y(n)), respectively. Let ¢ and X
denote the generalized Sylvester matrices, respectively:

G(Qq) G(0) 0
g= .. : )
0 G(Qe¢) G(0)
H(Qx) H(0) 0

H= . : 3.1)

0 H(Q~#) H(0)

Then,

v=G¢X, U=HY, Y=U+n (3.2)

In what follows, for convenience we assume the input
signal z(n) is an iid random process with mean zero
and variance o2. Thus, random processes v(n) and u(n)
have mean zero. We also assume all coefficients in the
ISI channel H(z) are i.i.d. with mean zero and variance
% and they are independent of z(n). Notice that this
assumption is only used to simplify the following analysis
and it does not apply to the single receiver system in Fig.
1, where the corresponding channel matrix H(z) has the
pseudo-circulant structure [10].

The mean distances between all values of u(n) and all
values of v(n) are :

1/3
d, £ (E(Z lv(m) —v(n)l’)> .

1/3
a2 (E(}: fu(m) - u(n)l’)) , 6y

respectively, where E means the expectation. By the as-
sumptions on the coefficients of H(z), it is not hard to see
the following relationship between the mean distance d of
the ISI channel output values u(n) and the mean distance
d, of the precoder output values (or the ISI channel input
values) v(n):

dy = ond.. (34)
This implies that the performance of a precoder in resisting
additive channel white noise is proportional to the mean
distance of the precoder output values. This result solves
the second issue arised in the beginning in this section and
we only need to study the mean distance d, of all the pre-
coder output values for the performance of resisting addi-
tive channel random errors. Based on the above analysis,
we have the following definition for optimal AR precoders.

Definition 1 An N x K ambiguity resistant precoder
G(z) is called optimal if the mean distance d, of all the
precoder output values is the mazimal among all Nx K am-
biguity resistant precoders, when the total energy is fized.



The squared mean distance d, can be calculated as

d = Z Ejv(m) - v(n)l2

= 2LN = 1) E(u(m)?) -2 2 E@(m)v(n). (39)
n m#n

where L is the length of the precoder output vector se-

quence V(n) and N is the precoder size. Let R(m,n) be

the correlation function of the random process v(n), i.e.,
R(m,n) = E(v(m)v"(n)).

Let R be the correlation matrix of v(n), i.e,

R = (R(m,n)) =E(6X (6X)') = GE(XX)'¢" = 0lg6",

(3.6)
where ! means the conjugate transpose. One can see that
the first term and the second term in the right hand side
of (3.5) for the distance d, are the sum of all the diagonal
clements, i.e., the trace, of the matrix GG' multiplied by
202, and the sum of all the off diagonal elements of the
matrix §G' multiplied by 203, respectively. In formula,
the squared mean distance d, can be calculated as

d? = 207 ((LN ~ 1)trace(66") - }:(GG')M)

m#n

=20} (wmce(gg') - Z(gg'),.,.) , 3.7

where ($G')m~ denotes the element at the mth row and
the nth column of GGt
We next want to simplify

coefficients in the precoder G(z).

d. in (3.7) by using all the
For a precoder G(z),

define
Dc 2 sum of all coefficients of all coefficient
matrices of G(2)G'(1/2), (3.8)
Ec 2 sumofal magnitude squared coefficients of
all coefficient matrices of G(z), (3.9)
where G' means the conjugate transpose of all coefficient

Let L be the length of the precoder
by (3.1), it is not

matrices of G(z).
output vector sequence V(n). Then,
bard to see that

trace(¢¢') = LE, and Z(gg’),..,. = LDg. (3.10)

Therefore,
d? = 203 L(LNEG - Dc)- (3.11)
Since Eg is fixed as the total energy of all the coeffi-
cients of the coefficient matrices in G(z), and 03, L, and

N are also fixed, based on formula (3.11) for the mean dis-
tance d., we have the following criterion for judging the
performance of an AR precoder.
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Definition 2 Nx K ambiguity resistant precoder G(z) 13
said better than N x K ambiguity resistant precoder F(2)
if Dg < Dr when Ec = Er, where Dg, Dr, Eg, and Er
are defined by (3.8)-(3.9) for precoders G(z) and F(2),

respectively.

on tbe mean distance d, of
we define the distance for a

Based on formula (3.11)
the precoder output values,
precoder as follows.
Definition 3 For an N x K precoder G(z), its distance
is defined by D

dG)& N - -i_:-‘i
G

where Dg and Ec are defined in (3.8)-(3-9).

With the above two definitions the following lemma is
straightforward.

Lemma 1 AR precoder G(z) is better than AR precoder
F(z) if and only if the distance of G(z) is greater than the
distance of F(2), i.e., d(G) > d(F).

Since the precoder output vector length L, the precoder
size N, and the input signal variance o? are fixed, the
following theorem is straightforward from (3.11).
Theorem 1 An NxK ambiguity resistant precoder G(z)
is optimal in all N x K ambiguity resistant precoders if
and only if the total sum D¢ of all the coefficients of all
the coefficient matrices of the product matniz G(z)G'(1/2) -
is minimal among all possible N x K ambiguity resistant
precoders F(z) when the total sum Eg of all the magnitude
squared coefficients of all coefficient matrices of F(z) is
fized.

Notice that

o2LDG = 02 3 (66" mn = 3 Blu(m)v"(n)

=E >o0. (312)

Z v(n)

»

Using (3.11), the following upper bound for the mean dis-
tance d, is proved.

Theorem 2 The mean distance d, of the precoder output
values for an N x K precoder G(2) is upper bounded by

d. < 0.LV2NVEq,

where o2 is the input signal variance, L is the length of
the precoder output vector sequence, and Eg is defined by
(8.9), i.e., the total energy of all coefficients in G(z). The
upper bound for the distance of an N x K precoder G(z)
isd(G) < N.

(3.13)



3.2 Optimal Systematic AR Precoders

In this subsection, we determine all optimal systematic
AR precoders with the form:

. 0 1 0
Fz)=| - '
0 o 1
Fi(z) Fafz) Fnoa(2) J vy
(3.14)

by using the above criterion. We have the following result.

Theorem 3 An N x (N — 1) systematic ambiguity resis-
tant precoder F(z) tn (3.14) with
ny
Fu(z2) =Y auz™, aun, #0, 1SkSN -1, (3.15)
=0
forny >n2> .- > nn-y 21, is optimal if and only if

Rk

Zau =-1, fork=12,.,N~-1

=0

(3.16)

Moreover, for the above optimal precoder, the mean dis-
tance d, of the precoder output values and the precoder
distance d(F) are

d, = 0. LV2NVEF,

where 02 1s the varance of the input signal, L is the length
of the precoder output vector sequence and

and d(F) =N, (3.17)

N=-1 ng

Er=N-1+3 Y laul

k=1 I=0

(3.18)

This theorem also implies that there exist AR precoders
that reach the upper bound (3.13), i.e.,, Dg =0.

4 Simulation Results and Conclusion

Some simulation results with 5 different AR precoders
with different distances are shown in Fig. 4.

In this paper, we introduced the concepts of precoder
distance and optimal AR precoders in justifying an AR
precoder. Given an N x K precoder G(z), its distance
is defined by d(G) = N — D¢/Eg, where Dg is the to-
tal sum of all coefficients of all coefficient matrices of the
matrix G(z)G'(1/z) and Eg is the total sum of all mag-
nitude squared coefficients of all coefficient matrices of the
matrix G(z). With this distance definition, an N x K
AR precoder is optimal if and only if its distance is N.
Furthermore, we characterized all N x (N — 1) optimal
systematic AR precoders. With this characterization, one
is able to construct all possible optimal N x (N — 1) sys-
tematic AR precoders. Finally, numerical simulations were
presented to illustrate the theory and the concepts. Our
numerical examples showed that an optimal AR precoder
has good performance in resisting both of the channel ISI
and additive random noise.
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Figure 4: Symbol Error Rate Comparison: Solid line
with * is for G;(z); Solid line with + is for Ga(2);
Solid line with o is for G3(z); Dashed line with x is
for G4(z); Solid line with x is for Gs(z). d(G,) =
d(G3) = 2, d(Gy) = d(Gs) = 4, d(G3) = 1.0858.
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